Wei Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663796/publications.pdf Version: 2024-02-01

WEI SHEN

#	Article	IF	CITATIONS
1	In Situ Passivation of PbBr ₆ ^{4–} Octahedra toward Blue Luminescent CsPbBr ₃ Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters, 2018, 3, 2030-2037.	17.4	402
2	Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs ₂ SnI ₆ Nanocrystals via a Facile Hot-Injection Process. Chemistry of Materials, 2016, 28, 8132-8140.	6.7	310
3	Lead-Free Perovskite Materials for Solar Cells. Nano-Micro Letters, 2021, 13, 62.	27.0	175
4	Alkyl-Thiol Ligand-Induced Shape- and Crystalline Phase-Controlled Synthesis of Stable Perovskite-Related CsPb ₂ Br ₅ Nanocrystals at Room Temperature. Journal of Physical Chemistry Letters, 2017, 8, 3853-3860.	4.6	100
5	Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8243-8249.	5.5	93
6	Controlled Synthesis of Composition Tunable Formamidinium Cesium Double Cation Lead Halide Perovskite Nanowires and Nanosheets with Improved Stability. Chemistry of Materials, 2017, 29, 2157-2166.	6.7	82
7	Direct Hot-Injection Synthesis of Lead Halide Perovskite Nanocubes in Acrylic Monomers for Ultrastable and Bright Nanocrystal–Polymer Composite Films. ACS Applied Materials & Interfaces, 2019, 11, 9317-9325.	8.0	67
8	Stable and conductive lead halide perovskites facilitated by X-type ligands. Nanoscale, 2017, 9, 7252-7259.	5.6	62
9	Reversible light-mediated compositional and structural transitions between CsPbBr ₃ and CsPb ₂ Br ₅ nanosheets. Chemical Communications, 2018, 54, 2804-2807.	4.1	54
10	Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 17482-17490.	5.5	50
11	Efficient Pure Blue Light-Emitting Diodes Based on CsPbBr ₃ Quantum-Confined Nanoplates. ACS Applied Materials & Interfaces, 2022, 14, 5682-5691.	8.0	33
12	Ligand-mediated synthesis of compositionally related cesium lead halide CsPb ₂ X ₅ nanowires with improved stability. Nanoscale, 2018, 10, 7658-7665.	5.6	30
13	Stable and Efficient Red Perovskite Light-Emitting Diodes Based on Ca ²⁺ -Doped CsPbl ₃ Nanocrystals. Research, 2021, 2021, 9829374.	5.7	28
14	Oriented Perovskite Crystal towards Efficient Charge Transport in FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000153.	5.8	26
15	Highly Emissive and Color-Tunable Perovskite Cross-linkers for Luminescent Polymer Networks. ACS Applied Materials & Interfaces, 2018, 10, 28971-28978.	8.0	20
16	Improving the Stability of α-CsPbI ₃ Nanocrystals in Extreme Conditions Facilitated by Mn ²⁺ Doping. ACS Omega, 2021, 6, 13831-13838.	3.5	20
17	Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence <i>via</i> aggregation-induced color switching. Nanoscale, 2019, 11, 2131-2137.	5.6	18
18	Basic Amino Acids Modulated Neutral-pH PEDOT:PSS for Stable Blue Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 28133-28144.	8.0	18

Wei Shen

#	Article	IF	CITATIONS
19	pâ€Type Dopants As Dual Function Interfacial Layer for Efficient and Stable Tin Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100068.	5.8	16
20	Hydroxylâ€Rich <scp>d</scp> â€Sorbitol to Address Transport Layer/Perovskite Interfacial Issues toward Highly Efficient and Stable 2D/3D Tinâ€Based Perovskite Solar Cells. Advanced Optical Materials, 2021, 9, 2100755.	7.3	16
21	Precise, sensitive, and reversible thermochromic luminescent sensing facilitated <i>via</i> bright high-temperature luminescent PEAMnBr _x l _{3â^'x} (<i>x</i> = 0/1/2/3). Journal of Materials Chemistry C, 2021, 9, 2729-2737.	5.5	12
22	Solution-Processed Quasi-Two-Dimensional/Nanoscrystals Perovskite Composite Film Enhances the Efficiency and Stability of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39720-39729.	8.0	11
23	Enhanced stability and performance of light-emitting diodes based on <i>in situ</i> fabricated FAPbBr ₃ nanocrystals <i>via</i> ligand compensation with <i>n</i> -octylphosphonic acid. Journal of Materials Chemistry C, 2020, 8, 9936-9944.	5.5	11
24	A pre-solution mixing precursor method for improving the crystallization quality of perovskite films and electroluminescence performance of perovskite light-emitting diodes. Nanoscale, 2019, 11, 20847-20856.	5.6	9
25	A donor–acceptor ligand boosting the performance of FA _{0.8} Cs _{0.2} PbBr ₃ nanocrystal light-emitting diodes. Nanoscale, 2021, 13, 1791-1799.	5.6	9
26	Ink formulation of in-situ crosslinkable hole-transporting composite for multilayer inkjet-printed organic light-emitting diodes. Organic Electronics, 2021, 99, 106337.	2.6	9
27	Environmentally Friendly Syntheses of Self-Healed and Printable CsPbBr ₃ Nanocrystals. Inorganic Chemistry, 2022, 61, 8604-8610.	4.0	8
28	Robust and Reversible Vapoluminescent Organometallic Copper Polymers. Macromolecular Rapid Communications, 2018, 39, e1800165.	3.9	3
29	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. Nanoscale, 2019, 11, 14592-14597.	5.6	3