Kyoko Imanaka-Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663748/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International Journal of Molecular Sciences, 2022, 23, 2617.	4.1	51
2	Myocardial T-Lymphocytes as a Prognostic Risk-Stratifying Marker of Dilated Cardiomyopathy ― Results of the Multicenter Registry to Investigate Inflammatory Cell Infiltration in Dilated Cardiomyopathy in Tissues of Endomyocardial Biopsy (INDICATE Study) ―. Circulation Journal, 2022, 86, 1092-1101.	1.6	4
3	Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT. Journal of Cardiology, 2021, 77, 174-178.	1.9	79
4	A New Mouse Model of Chronic Myocarditis Induced by Recombinant Bacille Calmette–Guèrin Expressing a T-Cell Epitope of Cardiac Myosin Heavy Chain-α. International Journal of Molecular Sciences, 2021, 22, 794.	4.1	5
5	Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Frontiers in Immunology, 2021, 12, 620541.	4.8	7
6	Tenascin-C in Heart Diseases—The Role of Inflammation. International Journal of Molecular Sciences, 2021, 22, 5828.	4.1	21
7	Serum tenascin-C predicts resistance to steroid combination therapy in high-risk Kawasaki disease: a multicenter prospective cohort study. Pediatric Rheumatology, 2021, 19, 82.	2.1	6
8	Clinical significance of chronic myocarditis: systematic review and meta-analysis. Heart and Vessels, 2021, , 1.	1.2	3
9	Tenascinâ€C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. Journal of Neuroscience Research, 2020, 98, 42-56.	2.9	46
10	Tenascin-C promotes the repair of cartilage defects in mice. Journal of Orthopaedic Science, 2020, 25, 324-330.	1.1	9
11	Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathology International, 2020, 70, 1-11.	1.3	58
12	Myocardial Native T1 Predicts Load-Independent Left Ventricular Chamber Stiffness In Patients With HFpEF. JACC: Cardiovascular Imaging, 2020, 13, 2117-2128.	5.3	12
13	Effects of Tenascin C on the Integrity of Extracellular Matrix and Skin Aging. International Journal of Molecular Sciences, 2020, 21, 8693.	4.1	30
14	Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. American Journal of Physiology - Cell Physiology, 2020, 319, C781-C796.	4.6	45
15	Tenascin-C Induces Phenotypic Changes in Fibroblasts to Myofibroblasts with High Contractility through the Integrin αvβ1/Transforming Growth Factor β/SMAD Signaling Axis in Human Breast Cancer. American Journal of Pathology, 2020, 190, 2123-2135.	3.8	41
16	Tenascin-C expression in renal biopsies from patients with tubulointerstitial nephritis and its relation to disease activity and prognosis. International Journal of Clinical and Experimental Pathology, 2020, 13, 1842-1852.	0.5	1
17	Influenzaâ€essociated septic shock accompanied by septic cardiomyopathy that developed in summer and mimicked fulminant myocarditis. Acute Medicine & Surgery, 2019, 6, 192-196.	1.2	7
18	Successful Inflammation Imaging of Non-Human Primate Hearts Using an Antibody Specific for Tenascin-C. International Heart Journal, 2019, 60, 151-158.	1.0	12

#	Article	IF	CITATIONS
19	Expression of tenascin C in cardiovascular lesions of Kawasaki disease. Cardiovascular Pathology, 2019, 38, 25-30.	1.6	14
20	Tenascin-C accelerates adverse ventricular remodelling after myocardial infarction by modulating macrophage polarization. Cardiovascular Research, 2019, 115, 614-624.	3.8	50
21	Effects of Tenascin-C Knockout on Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice. Molecular Neurobiology, 2018, 55, 1951-1958.	4.0	38
22	Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models. Cartilage, 2018, 9, 80-88.	2.7	20
23	A case of biopsy-proven eosinophilic myocarditis related to tetanus toxoid immunization. Cardiovascular Pathology, 2018, 37, 54-57.	1.6	22
24	Multiple Roles of Tenascins in Homeostasis and Pathophysiology of Aorta. Annals of Vascular Diseases, 2018, 11, 169-180.	0.5	12
25	Role of Periostin in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Stroke, 2017, 48, 1108-1111.	2.0	64
26	Fulminant Myocarditis With Prolonged Active Lymphocytic Infiltration After Hemodynamic Recovery. International Heart Journal, 2017, 58, 294-297.	1.0	14
27	Serum Tenascin-C as a Novel Predictor for Risk of Coronary Artery Lesion and Resistance to Intravenous Immunoglobulin in Kawasaki Disease – A Multicenter Retrospective Study –. Circulation Journal, 2016, 80, 2376-2381.	1.6	26
28	Epidermal growth factor-like repeats of tenascin-C-induced constriction of cerebral arteries via activation of epidermal growth factor receptors in rats. Brain Research, 2016, 1642, 436-444.	2.2	24
29	Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. Journal of Neurosurgery, 2016, 124, 1693-1702.	1.6	77
30	Tissue Remodeling in Vascular Wall in Kawasaki Disease-Related Vasculitis Model Mice. , 2016, , 241-242.		0
31	JNK is critical for the development of Candida albicans-induced vascular lesions in a mouse model of Kawasaki Disease. Cardiovascular Pathology, 2015, 24, 33-40.	1.6	14
32	Impact of serum tenascin-C on the aortic healing process during the chronic stage of type B acute aortic dissection. International Journal of Cardiology, 2015, 191, 97-99.	1.7	17
33	Effect of postconditioning on dynamic expression of tenascin-C and left ventricular remodeling after myocardial ischemia and reperfusion. EJNMMI Research, 2015, 5, 21.	2.5	9
34	Tenascin-C and integrins in cancer. Cell Adhesion and Migration, 2015, 9, 96-104.	2.7	135
35	Tenascin-C May Accelerate Cardiac Fibrosis by Activating Macrophages via the Integrin αVβ3/Nuclear Factorâ€ʿʿκB/Interleukin-6 Axis. Hypertension, 2015, 66, 757-766.	2.7	98
36	Effects of Tenascin-C on Early Brain Injury After Subarachnoid Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2015, 120, 69-73.	1.0	8

#	Article	IF	CITATIONS
37	Persistent Release of IL-1s from Skin Is Associated with Systemic Cardio-Vascular Disease, Emaciation and Systemic Amyloidosis: The Potential of Anti-IL-1 Therapy for Systemic Inflammatory Diseases. PLoS ONE, 2014, 9, e104479.	2.5	45
38	Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Frontiers in Physiology, 2014, 5, 283.	2.8	62
39	Tenascinâ€ $ℂ$ in Development and Disease of Blood Vessels. Anatomical Record, 2014, 297, 1747-1757.	1.4	55
40	Tenascinâ€C Aggravates Autoimmune Myocarditis via Dendritic Cell Activation and Th17 Cell Differentiation. Journal of the American Heart Association, 2014, 3, e001052.	3.7	64
41	Tenascin C protects aorta from acute dissection in mice. Scientific Reports, 2014, 4, 4051.	3.3	43
42	Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart and Vessels, 2013, 28, 646-657.	1.2	48
43	Preliminary study of serum tenascin-C levels as a diagnostic or prognostic biomarker of type B acute aortic dissection. International Journal of Cardiology, 2013, 168, 4267-4269.	1.7	24
44	Tenascin-C induces prolonged constriction of cerebral arteries in rats. Neurobiology of Disease, 2013, 55, 104-109.	4.4	40
45	New Insights into the Developmental Mechanisms of Coronary Vessels and Epicardium. International Review of Cell and Molecular Biology, 2013, 303, 263-317.	3.2	18
46	Matricellular Protein: A New Player in Cerebral Vasospasm Following Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2013, 115, 213-218.	1.0	15
47	Role of Platelet-Derived Growth Factor in Cerebral Vasospasm After Subarachnoid Hemorrhage in Rats. , 2013, 115, 219-223.		13
48	Tenascin-C in Cardiovascular Tissue Remodeling. Circulation Journal, 2012, 76, 2513-2520.	1.6	95
49	Matricellular Proteins: New Molecular Targets To Prevent Heart Failure. Cardiovascular Therapeutics, 2012, 30, e198-209.	2.5	55
50	Prognostic Value of Serum Tenascin-C Levels on Long-Term Outcome After Acute Myocardial Infarction. Journal of Cardiac Failure, 2012, 18, 480-486.	1.7	43
51	Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiology of Disease, 2012, 46, 172-179.	4.4	43
52	Toward in Vivo Imaging of Heart Disease Using a Radiolabeled Single-Chain Fv Fragment Targeting Tenascin-C. Analytical Chemistry, 2011, 83, 9123-9130.	6.5	16
53	Tenascin C Induces Epithelial-Mesenchymal Transition–Like Change Accompanied by SRC Activation and Focal Adhesion Kinase Phosphorylation in Human Breast Cancer Cells. American Journal of Pathology, 2011, 178, 754-763.	3.8	114
54	Tenascin C may regulate the recruitment of smooth muscle cells during coronary artery development. Differentiation, 2011, 81, 299-306.	1.9	22

#	Article	IF	CITATIONS
55	Tenascinâ€C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Pathology International, 2011, 61, 559-564.	1.3	30
56	Tenascin enhances crosstalk signaling of integrin αvβ3/PDGFRâ€Î² complex by SRC recruitment promoting PDGFâ€induced proliferation and migration in smooth muscle cells. Journal of Cellular Physiology, 2011, 226, 2617-2624.	4.1	68
57	Cerebrospinal Fluid Tenascin-C in Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgical Anesthesiology, 2011, 23, 310-317.	1.2	40
58	Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1072-H1078.	3.2	104
59	Dynamic Expression of Tenascin-C After Myocardial Ischemia and Reperfusion: Assessment by ¹²⁵ I-Anti–Tenascin-C Antibody Imaging. Journal of Nuclear Medicine, 2010, 51, 1116-1122.	5.0	38
60	Tenascin-C is induced in cerebral vasospasm after subarachnoid hemorrhage in rats and humans: a pilot study. Neurological Research, 2010, 32, 179-184.	1.3	37
61	Incremental Prognostic Values of Serum Tenascin-C Levels With Blood B-type Natriuretic Peptide Testing at Discharge in Patients With Dilated Cardiomyopathy and Decompensated Heart Failure. Journal of Cardiac Failure, 2009, 15, 898-905.	1.7	46
62	High prevalence of chronic myocarditis in dilated cardiomyopathy referred for left ventriculoplasty: expression of tenascin C as a possible marker for inflammation. Human Pathology, 2009, 40, 1015-1022.	2.0	35
63	Role of stromal tenascin-C in mouse prostatic development and epithelial cell differentiation. Developmental Biology, 2008, 324, 310-319.	2.0	18
64	Cerebrospinal Fluid Tenascin-C Increases Preceding the Development of Chronic Shunt-Dependent Hydrocephalus After Subarachnoid Hemorrhage. Stroke, 2008, 39, 1610-1612.	2.0	35
65	Noninvasive Detection of Cardiac Repair After Acute Myocardial Infarction in Rats by 111In Fab Fragment of Monoclonal Antibody Specific for Tenascin-C. International Heart Journal, 2008, 49, 481-492.	1.0	30
66	Tenascin-C synthesized in both donor grafts and recipients accelerates artery graft stenosis. Cardiovascular Research, 2007, 74, 366-376.	3.8	28
67	Higher Serum Tenascin-C Levels Reflect the Severity of Heart Failure, Left Ventricular Dysfunction and Remodeling in Patients With Dilated Cardiomyopathy. Circulation Journal, 2007, 71, 327-330.	1.6	82
68	Eplerenone Attenuates Myocardial Fibrosis in the Angiotensin II-Induced Hypertensive Mouse: Involvement of Tenascin-C Induced by Aldosterone-Mediated Inflammation. Journal of Cardiovascular Pharmacology, 2007, 49, 261-268.	1.9	78
69	Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C. Journal of Hepatology, 2007, 46, 664-673.	3.7	31
70	Locally applied cilostazol suppresses neointimal hyperplasia and medial thickening in a vein graft model. Annals of Thoracic and Cardiovascular Surgery, 2007, 13, 322-30.	0.8	21
71	Deficiency of tenascin C attenuates allergen-induced bronchial asthma in the mouse. European Journal of Immunology, 2006, 36, 3334-3345.	2.9	61
72	Serum Tenascin-C Might Be a Novel Predictor of Left Ventricular Remodeling and Prognosis After Acute Myocardial Infarction. Journal of the American College of Cardiology, 2006, 47, 2319-2325.	2.8	116

#	Article	IF	CITATIONS
73	MMP-2 expression is associated with rapidly proliferative arteriosclerosis in the flexor tenosynovium and pain severity in carpal tunnel syndrome. Journal of Pathology, 2005, 205, 443-450.	4.5	38
74	Diagnostic utility of tenascin-C for evaluation of the activity of human acute myocarditis. Journal of Pathology, 2005, 205, 460-467.	4.5	61
75	Tenascin-C is an essential factor for neointimal hyperplasia after aortotomy in mice. Cardiovascular Research, 2005, 65, 737-742.	3.8	40
76	Expression of matrix metalloproteinase-3 in mouse endometrial stromal cells during early pregnancy: Regulation by interleukin-1α and tenascin-C. Gynecological Endocrinology, 2005, 21, 111-118.	1.7	17
77	Tenascin-C—coated platinum coils for acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. Journal of Neurosurgery, 2005, 103, 681-686.	1.6	35
78	Tenascin-C Regulates Recruitment of Myofibroblasts during Tissue Repair after Myocardial Injury. American Journal of Pathology, 2005, 167, 71-80.	3.8	182
79	Co-stimulation of human breast cancer cells with transforming growth factor-Î ² and tenascin-C enhances matrix metalloproteinase-9 expression and cancer cell invasion. International Journal of Experimental Pathology, 2004, 85, 373-379.	1.3	35
80	Locally applied cilostazol suppresses neointimal hyperplasia by inhibiting tenascin-C synthesis and smooth muscle cell proliferation in free artery grafts. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 357-363.	0.8	36
81	The dynamic expression of tenascin-C and tenascin-X during early heart development in the mouse. Differentiation, 2003, 71, 291-298.	1.9	78
82	Tenascin upregulates matrix metalloproteinaseâ€9 in breast cancer cells: Direct and synergistic effects with transforming growth factor l²1. International Journal of Cancer, 2003, 105, 53-60.	5.1	87
83	Involvement of Large Tenascin-C Splice Variants in Breast Cancer Progression. American Journal of Pathology, 2003, 162, 1857-1867.	3.8	101
84	Histopathological findings in a human carotid artery after stent implantation. Journal of Neurosurgery, 2003, 98, 199-204.	1.6	27
85	Detection of Experimental Autoimmune Myocarditis in Rats by 111 In Monoclonal Antibody Specific for Tenascin-C. Circulation, 2002, 106, 1397-1402.	1.6	63
86	Tenascin-C is a useful marker for disease activity in myocarditis. Journal of Pathology, 2002, 197, 388-394.	4.5	117
87	Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development (Cambridge), 2002, 129, 1705-1714.	2.5	96
88	Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: clinical significance of early tenascin-C expression. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 439, 185-190	2.8	46
89	Tenascin-C Modulates Adhesion of Cardiomyocytes to Extracellular Matrix during Tissue Remodeling after Myocardial Infarction. Laboratory Investigation, 2001, 81, 1015-1024.	3.7	145
90	Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development (Cambridge), 2001, 128, 2953-2962.	2.5	198

#	Article	IF	CITATIONS
91	Expression of Tenascin-C in Stromal Cells of the Murine Uterus During Early Pregnancy: Induction by Interleukin-11±, Prostaglandin E2, and Prostaglandin F21±. Biology of Reproduction, 2000, 63, 1713-1720.	2.7	33
92	Possible Roles of the Tenascin Family During Heart Development and Myocardial Tissue Remodeling. Progress in Experimental Cardiology, 2000, , 123-129.	0.0	2
93	The Transmission of Contractility Through Cell Adhesion. Progress in Molecular and Subcellular Biology, 2000, 25, 21-35.	1.6	2
94	Vinculin, talin, integrin ?6?1 and laminin can serve as components of attachment complex mediating contraction force transmission from cardiomyocytes to extracellular matrix. Cytoskeleton, 1999, 42, 1-11.	4.4	45
95	N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes. , 1998, 39, 52-62.		60
96	Microtubules are involved in early hypertrophic responses of myocardium during pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H341-H348.	3.2	20
97	Regulation of Fibrillar Collagen Gene Expression and Protein Accumulation in Volume-Overloaded Cardiac Hypertrophy. Circulation, 1997, 95, 2448-2454.	1.6	60
98	Myofibrillogenesis in Precardiac Mesoderm Explant Culture Cell Structure and Function, 1997, 22, 45-49.	1.1	11
99	DEPOSITION OF PG-M/VERSICAN IS A MAJOR CAUSE OF HUMAN CORONARY RESTENOSIS AFTER PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY. Journal of Pathology, 1996, 180, 311-316.	4.5	36
100	Living adult rat cardiomyocytes in culture: Evidence for dissociation of costameric distribution of vinculin from costameric distributions of attachments. , 1996, 33, 263-275.		22
101	Organization of calsequestrin-positive sarcoplasmic reticulum in rat cardiomyocytes in culture. Journal of Cellular Physiology, 1994, 158, 87-96.	4.1	13
102	Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes. Cytoskeleton, 1993, 26, 301-312.	4.4	34
103	Incorporation of fluorescently labeled contractile proteins into freshly isolated living adult cardiac myocytes. Cytoskeleton, 1992, 21, 111-122.	4.4	34