
## Giuseppe Carbone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663723/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Team Social Network Structure and Resilience: A Complex System Approach. IEEE Transactions on Engineering Management, 2023, 70, 209-219.                                                                 | 2.4 | 10        |
| 2  | Peeling in electroadhesion soft grippers. Extreme Mechanics Letters, 2022, 50, 101529.                                                                                                                   | 2.0 | 21        |
| 3  | The role of interfacial friction on the peeling of thin viscoelastic tapes. Journal of the Mechanics and Physics of Solids, 2022, 159, 104706.                                                           | 2.3 | 9         |
| 4  | Thermoelastic effects in the contact mechanics of 1D+1D rough profiles. International Journal of Solids and Structures, 2022, 253, 111635.                                                               | 1.3 | 3         |
| 5  | Road vehicles travelling with time-dependent speed: theoretical study on the directional stability.<br>Vehicle System Dynamics, 2021, 59, 1214-1226.                                                     | 2.2 | 1         |
| 6  | Adhesion, Friction and Lubrication of Viscoelastic Materials. Lubricants, 2021, 9, 23.                                                                                                                   | 1.2 | 0         |
| 7  | State-Space Characterization of Balance Capabilities in Biped Systems with Segmented Feet. Frontiers in Robotics and Al, 2021, 8, 613038.                                                                | 2.0 | 1         |
| 8  | Special Issue "Anti-Adhesive Surfaces― Coatings, 2021, 11, 342.                                                                                                                                          | 1.2 | 0         |
| 9  | Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. Journal of the Mechanics and Physics of Solids, 2021, 148, 104273. | 2.3 | 23        |
| 10 | Dynamically induced friction reduction in micro-structured interfaces. Scientific Reports, 2021, 11, 8094.                                                                                               | 1.6 | 5         |
| 11 | Nonlinear viscoelastic isolation for seismic vibration mitigation. Mechanical Systems and Signal Processing, 2021, 157, 107626.                                                                          | 4.4 | 19        |
| 12 | A new technique for the characterization of viscoelastic materials: Theory, experiments and comparison with DMA. Journal of Sound and Vibration, 2021, 515, 116462.                                      | 2.1 | 10        |
| 13 | On the peeling of elastic tapes from viscoelastic substrates: Designing materials for ultratough peeling. Tribology International, 2020, 146, 106060.                                                    | 3.0 | 12        |
| 14 | Load sensitive super-hardness of nanocrystalline diamond coatings. Diamond and Related Materials, 2020, 101, 107653.                                                                                     | 1.8 | 14        |
| 15 | Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates.<br>International Journal of Mechanical Sciences, 2020, 170, 105331.                                        | 3.6 | 13        |
| 16 | Search behavior of individuals working in teams: A behavioral study on complex landscapes. Journal of Business Research, 2020, 118, 507-516.                                                             | 5.8 | 10        |
| 17 | Laser Microtextured Surfaces for Friction Reduction: Does the Pattern Matter?. Materials, 2020, 13, 4915.                                                                                                | 1.3 | 14        |
| 18 | NuVinci drive: Modeling and performance analysis. Mechanism and Machine Theory, 2020, 150, 103877.                                                                                                       | 2.7 | 10        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recent Advances in Hydrophobic and Icephobic Surface Treatments of Concrete. Coatings, 2020, 10, 449.                                                                                                                     | 1.2 | 60        |
| 20 | Proof of concept validation of a Common-rail pressure control using a Continuously Variable<br>Transmission (CVT). , 2020, , .                                                                                            |     | 0         |
| 21 | Common-rail pressure control using a Continuously Variable Transmission (CVT). , 2020, , .                                                                                                                                |     | Ο         |
| 22 | The surface displacements of an elastic half-space subjected to uniform tangential tractions applied on a circular area. European Journal of Mechanics, A/Solids, 2019, 73, 137-143.                                      | 2.1 | 11        |
| 23 | The Indentation Rolling Resistance in Belt Conveyors: A Model for the Viscoelastic Friction.<br>Lubricants, 2019, 7, 58.                                                                                                  | 1.2 | 7         |
| 24 | Water absorption in rubber-cement composites: 3D structure investigation by X-ray computed-tomography. Construction and Building Materials, 2019, 228, 116602.                                                            | 3.2 | 19        |
| 25 | Modelling and efficiency formulation of a planetary traction drive CVT. IFAC-PapersOnLine, 2019, 52, 411-416.                                                                                                             | 0.5 | 8         |
| 26 | The nonlinear dynamic behavior of a Rubber-Layer Roller Bearing (RLRB) for vibration isolation.<br>Journal of Sound and Vibration, 2019, 463, 114952.                                                                     | 2.1 | 20        |
| 27 | The Contact Mechanics of Coated Elastic Solids: Effect of Coating Thickness and Stiffness. Tribology<br>Letters, 2019, 67, 1.                                                                                             | 1.2 | 8         |
| 28 | Thermal Fluctuations and Dynamic Modeling of a dAFM Cantilever. Advanced Theory and Simulations, 2019, 2, 1900004.                                                                                                        | 1.3 | 2         |
| 29 | Non-linear dynamic behavior of a Rubber-Layer Roller Bearings (RLRB) isolator. Mechanisms and<br>Machine Science, 2019, , 4105-4115.                                                                                      | 0.3 | 0         |
| 30 | Friction in rough contacts of linear viscoelastic surfaces with anisotropic statistical properties.<br>European Physical Journal E, 2019, 42, 80.                                                                         | 0.7 | 9         |
| 31 | Viscoelasticity induces anisotropy in contacts of rough solids. Journal of the Mechanics and Physics of Solids, 2019, 129, 147-159.                                                                                       | 2.3 | 29        |
| 32 | Soft matter laser micro-texturing for friction reduction: An experimental investigation. Tribology<br>International, 2019, 136, 82-86.                                                                                    | 3.0 | 26        |
| 33 | Common-Rail Pressure Control Using a Model Reference Adaptive Control Approach. , 2019, , .                                                                                                                               |     | 2         |
| 34 | Are distrust relationships beneficial for group performance? The influence of the scope of distrust<br>on the emergence of collective intelligence. International Journal of Production Economics, 2019,<br>208, 343-355. | 5.1 | 17        |
| 35 | Viscoelastic reciprocating contacts in presence of finite rough interfaces: A numerical investigation.<br>Journal of the Mechanics and Physics of Solids, 2018, 114, 185-193.                                             | 2.3 | 21        |
| 36 | Rough contact of sliding viscoelastic layers: numerical calculations and theoretical predictions.<br>Tribology International, 2018, 122, 67-75.                                                                           | 3.0 | 40        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The multiple V-shaped double peeling of elastic thin films from elastic soft substrates. Journal of the<br>Mechanics and Physics of Solids, 2018, 113, 56-64.                                                                           | 2.3 | 25        |
| 38 | Modeling and simulation in tribology across scales: An overview. Tribology International, 2018, 125, 169-199.                                                                                                                           | 3.0 | 335       |
| 39 | Do uniform tangential interfacial stresses enhance adhesion?. Journal of the Mechanics and Physics of Solids, 2018, 112, 145-156.                                                                                                       | 2.3 | 36        |
| 40 | Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates. Journal of Physics Condensed Matter, 2018, 30, 045001.                                                                            | 0.7 | 10        |
| 41 | Mimicking the collective intelligence of human groups as an optimization tool for complex problems.<br>Chaos, Solitons and Fractals, 2018, 110, 259-266.                                                                                | 2.5 | 15        |
| 42 | Non-linear double-peeling: Experimental vs. theoretical predictions. Journal of Adhesion, 2018, 94,<br>46-57.                                                                                                                           | 1.8 | 7         |
| 43 | Experimental validation of the Carbone–Mangialardi–Mantriota model of continuously variable<br>transmissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile<br>Engineering, 2018, 232, 828-837. | 1.1 | 5         |
| 44 | Effects of the micro surface texturing in lubricated non-conformal point contacts. Tribology<br>International, 2018, 127, 296-301.                                                                                                      | 3.0 | 52        |
| 45 | Water entry and fall of hydrophobic and superhydrophobic Teflon spheres. Journal of Physics<br>Condensed Matter, 2018, 30, 445001.                                                                                                      | 0.7 | 3         |
| 46 | Team Resilience in Complex and Turbulent Environments: The Effect of Size and Density of Social<br>Interactions. Complexity, 2018, 2018, 1-11.                                                                                          | 0.9 | 20        |
| 47 | Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models<br>and Persson's Theory. Tribology Letters, 2018, 66, 1.                                                                                | 1.2 | 68        |
| 48 | A CRITICAL ASSESSMENT OF KASSAPOGLOU'S STATISTICAL MODEL FOR COMPOSITES FATIGUE. Facta Universitatis, Series: Mechanical Engineering, 2018, 16, 115.                                                                                    | 2.3 | 5         |
| 49 | Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica, 2017, 52, 2807-2817.                                                                                                            | 1.2 | 34        |
| 50 | Soft blasting of fluorinated polymers: The easy way to superhydrophobicity. Materials and Design, 2017, 121, 414-420.                                                                                                                   | 3.3 | 16        |
| 51 | Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 21-27.                                                | 1.5 | 10        |
| 52 | An Ising-based dynamic model to study the effect of social interactions on firm absorptive capacity.<br>International Journal of Production Economics, 2017, 194, 214-227.                                                              | 5.1 | 10        |
| 53 | Meeting the Contact-Mechanics Challenge. Tribology Letters, 2017, 65, 1.                                                                                                                                                                | 1.2 | 232       |
| 54 | Contact Mechanics of Mushroom-Shaped Adhesive Structures. Biologically-inspired Systems, 2017, ,<br>245-276.                                                                                                                            | 0.4 | 1         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Criticality triggers the emergence of collective intelligence in groups. Physical Review E, 2017, 96, 022309.                                                                                | 0.8 | 21        |
| 56 | Role of Dextran in Maintaining Adhesive and Stiffness Properties of Prestripped DMEK Lenticules.<br>European Journal of Ophthalmology, 2017, 27, 270-277.                                    | 0.7 | 6         |
| 57 | Non-Uniform Laser Surface Texturing of an Un-Tapered Square Pad for Tribological Applications.<br>Lubricants, 2017, 5, 41.                                                                   | 1.2 | 12        |
| 58 | Viscoelastic Damping in alternate reciprocating contacts. Scientific Reports, 2017, 7, 8333.                                                                                                 | 1.6 | 7         |
| 59 | A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired<br>Membranes. Biomimetics, 2016, 1, 3.                                                            | 1.5 | 6         |
| 60 | Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties. Journal of Colloid and Interface Science, 2016, 482, 175-182.           | 5.0 | 23        |
| 61 | Modeling chain continuously variable transmission for direct implementation in transmission control. Mechanism and Machine Theory, 2016, 105, 428-440.                                       | 2.7 | 24        |
| 62 | Theory of reciprocating contact for viscoelastic solids. Physical Review E, 2016, 93, 043003.                                                                                                | 0.8 | 30        |
| 63 | The ultratough peeling of elastic tapes from viscoelastic substrates. Journal of the Mechanics and Physics of Solids, 2016, 96, 223-234.                                                     | 2.3 | 35        |
| 64 | Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. Journal of the Mechanics and Physics of Solids, 2016, 95, 517-529. | 2.3 | 55        |
| 65 | Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates.<br>International Journal of Solids and Structures, 2016, 88-89, 101-109.                    | 1.3 | 46        |
| 66 | Sphere-on-cone microstructures on Teflon surface: Repulsive behavior against impacting water droplets. Materials and Design, 2016, 92, 1052-1061.                                            | 3.3 | 16        |
| 67 | A PARAMETRICALLY TIME-DEPENDENT METHODOLOGY FOR RECIPROCATING CONTACT MECHANICS BETWEEN VISCOELASTIC SOLIDS. , 2016, , .                                                                     |     | 0         |
| 68 | Loading-unloading hysteresis loop of randomly rough adhesive contacts. Physical Review E, 2015, 92,<br>062404.                                                                               | 0.8 | 34        |
| 69 | Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces. Physical<br>Review E, 2015, 92, 042407.                                                           | 0.8 | 8         |
| 70 | Fluid contact angle on solid surfaces: Role of multiscale surface roughness. Journal of Chemical<br>Physics, 2015, 143, 134705.                                                              | 1.2 | 27        |
| 71 | Mechanics of rough contacts in elastic and viscoelastic thin layers. International Journal of Solids and Structures, 2015, 69-70, 507-517.                                                   | 1.3 | 58        |
| 72 | Model of human collective decision-making in complex environments. European Physical Journal B, 2015, 88, 1.                                                                                 | 0.6 | 26        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces. Journal of Physics Condensed Matter, 2015, 27, 015009.                                                   | 0.7 | 9         |
| 74 | Direction-dependent adhesion of micro-walls based biomimetic adhesives. International Journal of Adhesion and Adhesives, 2015, 61, 93-98.                                                                                          | 1.4 | 12        |
| 75 | Hydrodynamic lubrication of micro-textured surfaces: Two dimensional CFD-analysis. Tribology<br>International, 2015, 88, 162-169.                                                                                                  | 3.0 | 31        |
| 76 | Wenzel to Cassie Transition in Superhydrophobic Randomly Rough Surfaces. Nanoscience and Nanotechnology Letters, 2015, 7, 74-78.                                                                                                   | 0.4 | 12        |
| 77 | Equilibrium states and stability of pre-tensioned adhesive tapes. Beilstein Journal of Nanotechnology, 2014, 5, 1725-1731.                                                                                                         | 1.5 | 12        |
| 78 | A review of boundary elements methodologies for elastic and viscoelastic rough contact mechanics.<br>Physical Mesomechanics, 2014, 17, 321-333.                                                                                    | 1.0 | 13        |
| 79 | A theoretical and experimental study of viscoelastic rolling contacts incorporating thermal effects.<br>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014,<br>228, 1112-1121. | 1.0 | 16        |
| 80 | Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Applied Physics<br>Letters, 2014, 104, 011906.                                                                                                    | 1.5 | 41        |
| 81 | Laser surface micro-texturing to enhance the frictional behavior of lubricated steel. Proceedings of SPIE, 2014, , .                                                                                                               | 0.8 | 4         |
| 82 | The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140392.                                              | 1.0 | 33        |
| 83 | Femtosecond laser full and partial texturing of steel surfaces to reduce friction in lubricated contact. Advanced Optical Technologies, 2014, 3, 539-547.                                                                          | 0.9 | 13        |
| 84 | Double peeling of elastic pre-tensioned tapes. Frattura Ed Integrita Strutturale, 2014, 8, 237-243.                                                                                                                                | 0.5 | 1         |
| 85 | Minimize friction of lubricated laser-microtextured-surfaces by tuning microholes depth. Tribology<br>International, 2014, 75, 123-127.                                                                                            | 3.0 | 71        |
| 86 | Cassie state robustness of plasma generated randomly nano-rough surfaces. Applied Surface Science, 2014, 316, 324-332.                                                                                                             | 3.1 | 36        |
| 87 | The effect of drop volume and micropillar shape on the apparent contact angle of ordered microstructured surfaces. Soft Matter, 2014, 10, 3906.                                                                                    | 1.2 | 31        |
| 88 | Rough viscoelastic sliding contact: Theory and experiments. Physical Review E, 2014, 89, 032408.                                                                                                                                   | 0.8 | 44        |
| 89 | Adhesion control by inflation: implications from biology to artificial attachment device. Applied Physics A: Materials Science and Processing, 2014, 116, 567-573.                                                                 | 1.1 | 44        |
| 90 | Superior hardness and Young's modulus of low temperature nanocrystalline diamond coatings.<br>Materials Chemistry and Physics, 2014, 144, 505-511.                                                                                 | 2.0 | 22        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Adhesion of Elastic Pre-Stressed Tapes. , 2014, , .                                                                                                                                      |     | Ο         |
| 92  | An Ising-based approach to the study of inter-organizational team dynamics. , 2014, , .                                                                                                  |     | 2         |
| 93  | Micro-Textured Surfaces With Parallel Wall-Like Structures: â€~Modulation' of Adhesion Properties<br>With the Direction of the Applied External Moment. , 2014, , .                      |     | 1         |
| 94  | A Dynamic Simulation of a Novel Continuous Variable Transmission. Mechanisms and Machine Science, 2014, , 109-116.                                                                       | 0.3 | 2         |
| 95  | Viscoelastic Contact of a Half-Plane Sliding Over a Slightly Wavy Rigid Surface. , 2014, , .                                                                                             |     | Ο         |
| 96  | A review of adhesion mechanisms of mushroom-shaped microstructured adhesives. Meccanica, 2013, 48, 1819-1833.                                                                            | 1.2 | 30        |
| 97  | Role of Statistical Properties of Randomly Rough Surfaces in Controlling Superhydrophobicity.<br>Langmuir, 2013, 29, 599-609.                                                            | 1.6 | 50        |
| 98  | A multiscale analysis of elastic contacts and percolation threshold for numerically generated and real rough surfaces. Tribology International, 2013, 64, 148-154.                       | 3.0 | 54        |
| 99  | Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison with Theory. Tribology<br>Letters, 2013, 51, 105-113.                                                          | 1.2 | 38        |
| 100 | Elastic contact of rough surfaces: A simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear, 2013, 297, 811-817.                                                     | 1.5 | 32        |
| 101 | Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements.<br>Engineering Fracture Mechanics, 2013, 98, 315-325.                                         | 2.0 | 34        |
| 102 | Adhesion of Elastic Thin Films: Double Peeling of Tapes Versus Axisymmetric Peeling of Membranes.<br>Tribology Letters, 2013, 52, 439-447.                                               | 1.2 | 55        |
| 103 | Friction in Totally Optical Robotic Finger Oriented on Shear Force Measurement. IEEE Sensors<br>Journal, 2013, 13, 548-555.                                                              | 2.4 | 8         |
| 104 | A novel probabilistic approach to assess the blade throw hazard of wind turbines. Renewable Energy, 2013, 51, 474-481.                                                                   | 4.3 | 7         |
| 105 | Friction Properties of Lubricated Laser-MicroTextured-Surfaces: An Experimental Study from<br>Boundary- to Hydrodynamic-Lubrication. Tribology Letters, 2013, 49, 117-125.               | 1.2 | 86        |
| 106 | Varying the Geometry of Laser Surface Microtexturing to Enhance the Frictional Behavior of Lubricated Steel Surfaces. Physics Procedia, 2013, 41, 677-682.                               | 1.2 | 9         |
| 107 | A novel methodology to predict sliding and rolling friction of viscoelastic materials: Theory and experiments. Journal of the Mechanics and Physics of Solids, 2013, 61, 1822-1834.      | 2.3 | 140       |
| 108 | Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart Tribological Design<br>to Improve Terrestrial Vehicle Performance. Advances in Tribology, 2013, 2013, 1-9. | 2.1 | 13        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Mechanisms of Detachment of Mushroomâ€ <scp>S</scp> haped Microâ€ <scp>P</scp> illars: From<br>Defect Propagation to Membrane Peeling. Macromolecular Reaction Engineering, 2013, 7, 609-615.          | 0.9 | 34        |
| 110 | Ferromagnetic Properties of Hybrid Cementite and Diamond Nanocomposite. Smart Science, 2013, 1, 69-74.                                                                                                     | 1.9 | 2         |
| 111 | The Double Roller Full Toroidal Variator: A Promising Solution for KERS Technology. Lecture Notes in<br>Electrical Engineering, 2013, , 241-250.                                                           | 0.3 | 1         |
| 112 | The Influence of the Fractal Dimension of Rough Surfaces on the Adhesion of Elastic Materials.<br>Journal of Adhesion Science and Technology, 2012, 26, 2555-2570.                                         | 1.4 | 11        |
| 113 | A Two-Scale Approach for Lubricated Soft-Contact Modeling: An Application to Lip-Seal Geometry.<br>Advances in Tribology, 2012, 2012, 1-12.                                                                | 2.1 | 11        |
| 114 | Traction and Efficiency Performance of the Double Roller Full-Toroidal Variator: A Comparison With<br>Half- and Full-Toroidal Drives. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, . | 1.7 | 27        |
| 115 | Effect of interfacial air entrapment on the adhesion of bio-inspired mushroom-shaped micro-pillars.<br>Soft Matter, 2012, 8, 7904.                                                                         | 1.2 | 26        |
| 116 | Biomimetic surfaces with controlled direction-dependent adhesion. Journal of the Royal Society<br>Interface, 2012, 9, 3359-3365.                                                                           | 1.5 | 30        |
| 117 | Sticky Bioâ€inspired Micropillars: Finding the Best Shape. Small, 2012, 8, 1449-1454.                                                                                                                      | 5.2 | 103       |
| 118 | A new efficient numerical method for contact mechanics of rough surfaces. International Journal of Solids and Structures, 2012, 49, 338-343.                                                               | 1.3 | 140       |
| 119 | The influence of the statistical properties of self-affine surfaces in elastic contacts: A numerical investigation. Journal of the Mechanics and Physics of Solids, 2012, 60, 973-982.                     | 2.3 | 101       |
| 120 | Interacting and coalescing Hertzian asperities: A new multiasperity contact model. Wear, 2012, 278-279, 28-33.                                                                                             | 1.5 | 82        |
| 121 | Lubrication in soft rough contacts: A novel homogenized approach. Part II - Discussion. Soft Matter, 2011, 7, 10407.                                                                                       | 1.2 | 29        |
| 122 | Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft<br>Matter, 2011, 7, 5545.                                                                                    | 1.2 | 226       |
| 123 | Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory. Soft Matter, 2011,<br>7, 10395.                                                                                         | 1.2 | 61        |
| 124 | Contact mechanics of rough surfaces: a comparison between theories. Meccanica, 2011, 46, 557-565.                                                                                                          | 1.2 | 48        |
| 125 | Experimental Evidence of Micro-EHL Lubrication in Rough Soft Contacts. Tribology Letters, 2011, 43, 169-174.                                                                                               | 1.2 | 40        |
| 126 | Experimental Investigation of Chain Link Forces in Continuously Variable Transmissions. Journal of<br>Mechanical Design, Transactions of the ASME, 2010, 132, .                                            | 1.7 | 9         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | An Enhanced CMM Model for the Accurate Prediction of Steady-State Performance of CVT Chain<br>Drives. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .            | 1.7 | 23        |
| 128 | Transition from elastohydrodynamic to mixed lubrication in highly loaded squeeze contacts. Journal of the Mechanics and Physics of Solids, 2010, 58, 1361-1373.                       | 2.3 | 7         |
| 129 | Average separation between a rough surface and a rubber block: Comparison between theories and experiments. Wear, 2010, 268, 984-990.                                                 | 1.5 | 23        |
| 130 | Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles. Journal of Physics Condensed Matter, 2010, 22, 325107.    | 0.7 | 28        |
| 131 | Design Optimization of Input and Output Coupled Power Split Infinitely Variable Transmissions.<br>Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .                | 1.7 | 18        |
| 132 | Fluid leakage in seals: An approach based on percolation theory. Tribology International, 2009, 42, 731-737.                                                                          | 3.0 | 53        |
| 133 | EHL squeeze at pin–pulley interface in CVTs: Influence of lubricant rheology. Tribology International, 2009, 42, 862-868.                                                             | 3.0 | 11        |
| 134 | A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. Journal of the Mechanics and Physics of Solids, 2009, 57, 1093-1102. | 2.3 | 49        |
| 135 | Tuning fork microgyrometers: Narrow gap vs. wide gap design. Journal of Sound and Vibration, 2009, 322, 78-97.                                                                        | 2.1 | 6         |
| 136 | Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. European Physical Journal E, 2009, 29, 275-284.                            | 0.7 | 131       |
| 137 | Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. European Physical Journal E, 2009, 30, 65-74.                                  | 0.7 | 79        |
| 138 | Leakage mechanism in flat seals. Journal of Applied Physics, 2009, 106, .                                                                                                             | 1.1 | 63        |
| 139 | The Lubrication Regime at Pin-Pulley Interface in Chain CVTs. Journal of Mechanical Design,<br>Transactions of the ASME, 2009, 131, .                                                 | 1.7 | 6         |
| 140 | Analysis of the adhesive contact of confined layers by using a Green's function approach. Journal of the Mechanics and Physics of Solids, 2008, 56, 684-706.                          | 2.3 | 72        |
| 141 | Asperity contact theories: Do they predict linearity between contact area and load?. Journal of the Mechanics and Physics of Solids, 2008, 56, 2555-2572.                             | 2.3 | 205       |
| 142 | Shift dynamics modelling for optimisation of variator slip control in a pushbelt CVT. International<br>Journal of Vehicle Design, 2008, 48, 45.                                       | 0.1 | 15        |
| 143 | CVT dynamics: Theory and experiments. Mechanism and Machine Theory, 2007, 42, 409-428.                                                                                                | 2.7 | 91        |
| 144 | Non-linear oscillations in a passive magnetic suspension. International Journal of Non-Linear<br>Mechanics, 2006, 41, 1039-1049.                                                      | 1.4 | 12        |

| #   | ARTICLE                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Hydrophobic properties of a wavy rough substrate. European Physical Journal E, 2005, 16, 67-76.                                                                    | 0.7 | 89        |
| 146 | Crack motion in viscoelastic solids: The role of the flash temperature. European Physical Journal E, 2005, 17, 261-281.                                            | 0.7 | 59        |
| 147 | The Influence of Pulley Deformations on the Shifting Mechanism of Metal Belt CVT. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 103-113.      | 1.7 | 63        |
| 148 | Hot Cracks in Rubber: Origin of the Giant Toughness of Rubberlike Materials. Physical Review Letters, 2005, 95, 114301.                                            | 2.9 | 45        |
| 149 | Elastic beam over an adhesive wavy foundation. Journal of Applied Physics, 2004, 95, 4476-4482.                                                                    | 1.1 | 19        |
| 150 | Dewetting at soft viscoelastic interfaces. Journal of Chemical Physics, 2004, 121, 2246-2252.                                                                      | 1.2 | 23        |
| 151 | Adhesion between a thin elastic plate and a hard randomly rough substrate. Physical Review B, 2004,<br>70, .                                                       | 1.1 | 55        |
| 152 | A comparison of the performances of full and half toroidal traction drives. Mechanism and Machine Theory, 2004, 39, 921-942.                                       | 2.7 | 74        |
| 153 | Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. Journal of the Mechanics and Physics of Solids, 2004, 52, 1267-1287. | 2.3 | 108       |
| 154 | EHL visco-plastic friction model in CVT shifting behaviour. International Journal of Vehicle Design, 2003, 32, 332.                                                | 0.1 | 12        |
| 155 | Influence of Clearance Between Plates in Metal Pushing V-Belt Dynamics. Journal of Mechanical<br>Design, Transactions of the ASME, 2002, 124, 543-557.             | 1.7 | 21        |
| 156 | Fuel Consumption of a Mid Class Vehicle with Infinitely Variable Transmission. , 2001, , .                                                                         |     | 18        |
| 157 | Theoretical Model of Metal V-Belt Drives During Rapid Ratio Changing. Journal of Mechanical Design,<br>Transactions of the ASME, 2001, 123, 111-117.               | 1.7 | 27        |