

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663543/publications.pdf Version: 2024-02-01

IöRC MEV

#	Article	IF	CITATIONS
1	Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrowâ€derived macrophages under inflammatory stress. Journal of Cellular Physiology, 2022, 237, 1455-1470.	2.0	7
2	Bile acids attenuate PKM2 pathway activation in proinflammatory microglia. Scientific Reports, 2022, 12, 1459.	1.6	13
3	Tauroursodeoxycholic Acid Reduces Neuroinflammation but Does Not Support Long Term Functional Recovery of Rats with Spinal Cord Injury. Biomedicines, 2022, 10, 1501.	1.4	6
4	Retinoic acid increases phagocytosis of myelin by macrophages. Journal of Cellular Physiology, 2021, 236, 3929-3945.	2.0	14
5	Expression patterns of chloride transporters in the auditory brainstem of developing chicken. Hearing Research, 2020, 393, 108013.	0.9	1
6	Treatment of rats with spinal cord injury using human bone marrow-derived stromal cells prepared by negative selection. Journal of Biomedical Science, 2020, 27, 35.	2.6	16
7	Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3289-3304.	1.3	29
8	Fighting for the web: competition between female feather-legged spiders (Uloborus plumipes). Zoology, 2017, 121, 10-17.	0.6	5
9	Vibratory movements in contests between females of the feather-legged spider (Uloborus plumipes). Zoology, 2017, 125, 87-93.	0.6	0
10	Characterisation of cell–substrate interactions between Schwann cells and threeâ€dimensional fibrin hydrogels containing orientated nanofibre topographical cues. European Journal of Neuroscience, 2016, 43, 376-387.	1.2	25
11	Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice. Nuclear Receptor Research, 2015, 2, .	2.5	1
12	ls retinoic acid a signal for nerve regeneration in insects?. Neural Regeneration Research, 2015, 10, 901.	1.6	7
13	Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria. Cell and Tissue Research, 2014, 358, 303-312.	1.5	8
14	Threeâ€dimensional configuration of orientated fibers as guidance structures for cell migration and axonal growth. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 356-365.	1.6	39
15	Spinal cord injury induced changes of nuclear receptors PPARα and LXRβ and modulation with oleic acid/albumin treatment. Brain Research, 2013, 1535, 89-105.	1.1	12
16	Expression of retinoid X receptor beta is induced in astrocytes during corpus callosum demyelination. Journal of Chemical Neuroanatomy, 2012, 43, 120-132.	1.0	12
17	Functionalization of Electrospun Poly(Îμ-Caprolactone) Fibers with the Extracellular Matrix-Derived Peptide GRGDS Improves Guidance of Schwann Cell Migration and Axonal Growth. Tissue Engineering - Part A, 2011, 17, 475-486.	1.6	47
18	Electrospun Fibers as Substrates for Peripheral Nerve Regeneration. Advances in Polymer Science, 2011, , 131-170.	0.4	8

JöRG MEY

#	Article	IF	CITATIONS
10	Functionalization of electrospun fibers of poly($\hat{l}\mu$ -caprolactone) with star shaped NCO-poly(ethylene) Tj ETQq1 1		
19	Materials in Medicine, 2010, 21, 2637-2651.	1.7	34
20	Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. Journal of Neuroimmunology, 2010, 229, 169-179.	1.1	65
21	Inflammatory chemokine release of astrocytes <i>in vitro</i> is reduced by allâ€ <i>trans</i> retinoic acid. Journal of Neurochemistry, 2010, 114, 1511-1526.	2.1	40
22	Künstliche Implantate für die Regeneration peripherer Nerven. E-Neuroforum, 2010, 16, 218-225.	0.2	1
23	Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro. Brain Research, 2009, 1302, 64-75.	1.1	9
24	Deposition of Electrospun Fibers on Reactive Substrates for <i>In Vitro</i> Investigations. Tissue Engineering - Part C: Methods, 2009, 15, 77-85.	1.1	48
25	Human neural cell interactions with orientated electrospun nanofibers <i>in vitro</i> . Nanomedicine, 2009, 4, 11-30.	1.7	99
26	Expression of Enzymes Involved in the Prostanoid Metabolism by Cortical Astrocytes after LPS-induced Inflammation. Journal of Molecular Neuroscience, 2008, 34, 177-185.	1.1	46
27	Antiâ€inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. Journal of Neurochemistry, 2008, 106, 320-332.	2.1	34
28	Regulation of RALDHâ€1, RALDHâ€3 and CYP26A1 by transcription factors cVax/Vax2 and Tbx5 in the embryonic chick retina. International Journal of Developmental Neuroscience, 2008, 26, 435-445.	0.7	4
29	RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Progress in Neurobiology, 2008, 85, 433-451.	2.8	84
30	RAR/RXR and PPAR/RXR Signaling in Spinal Cord Injury. PPAR Research, 2007, 2007, 1-14.	1.1	30
31	Retinoic acid enhances Erk phosphorylation in the chick retina. Neuroscience Letters, 2007, 426, 18-22.	1.0	12
32	Characterization of retinaldehyde dehydrogenaseâ€2 induction in NG2â€positive glia after spinal cord contusion injury. International Journal of Developmental Neuroscience, 2007, 25, 7-16.	0.7	25
33	Effects of inflammatory cytokines IL-1 $\hat{1}^2$, IL-6, and TNF $\hat{1}^\pm$ on the intracellular localization of retinoid receptors in Schwann cells. Glia, 2007, 55, 152-164.	2.5	39
34	Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials, 2007, 28, 3012-3025.	5.7	667
35	Neuronal differentiation of the early embryonic auditory hindbrain of the chicken in primary culture. European Journal of Neuroscience, 2007, 25, 974-984.	1.2	9
36	Distribution of the cellular retinoic acid binding protein CRABP-I in the developing chick optic tectum. Brain Research, 2007, 1168, 21-31.	1.1	6

Jörg Mey

148

#	Article	IF	CITATIONS
37	Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury. European Journal of Neuroscience, 2006, 23, 285-295.	1.2	66
38	Vitamin A im Gehirn: Die Bedeutung der RetinsÄ ¤ re-Signaltransduktion fļr das adulte Nervensystem. E-Neuroforum, 2006, 12, 152-159.	0.2	0
39	Skin Retinoid Concentrations Are Modulated by CYP26AI Expression Restricted to Basal Keratinocytes in Normal Human Skin and Differentiated 3D Skin Models. Journal of Investigative Dermatology, 2006, 126, 2473-2480.	0.3	61
40	New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. Journal of Neurobiology, 2006, 66, 757-779.	3.7	79
41	Retinoic acid synthesis by a population of NG2â€positive cells in the injured spinal cord. European Journal of Neuroscience, 2005, 21, 1555-1568.	1.2	48
42	Characterization of retinoic acid neuromodulation in the carp retina. Journal of Neuroscience Research, 2004, 78, 177-185.	1.3	12
43	Retinoic Acid Signaling in the Nervous System of Adult Vertebrates. Neuroscientist, 2004, 10, 409-421.	2.6	119
44	Retinoic acid-dependent regulation of BMP4 and Tbx5 in the embryonic chick retina. NeuroReport, 2004, 15, 2751-5.	0.6	7
45	Activation of retinoic acid signalling after sciatic nerve injury: up-regulation of cellular retinoid binding proteins. European Journal of Neuroscience, 2003, 18, 1033-1040.	1.2	56
46	Retinal Dehydrogenase-2 Is Inhibited by Compounds that Induce Congenital Diaphragmatic Hernias in Rodents. American Journal of Pathology, 2003, 162, 673-679.	1.9	120
47	Retinoic acid downregulates the expression of ciliary neurotrophic factor in rat Schwann cells. Neuroscience Letters, 2003, 339, 13-16.	1.0	18
48	Retinoic acid enhances leukemia inhibitory factor expression in OLN-93 oligodendrocytes. Cell and Tissue Research, 2002, 310, 155-161.	1.5	10
49	Development of the visual system of the chick. Brain Research Reviews, 2001, 35, 205-245.	9.1	90
50	Dendrite development and target innervation of displaced retinal ganglion cells of the chick (Gallus) Tj ETQq0 0 () rgBT /Ov	verlock 10 Tf 5
51	Retinoic Acid as a Regulator of Cytokine Signaling after Nerve Injury. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 163-176.	0.6	28
52	Sources and sink of retinoic acid in the embryonic chick retina: distribution of aldehyde dehydrogenase activities, CRABP-I, and sites of retinoic acid inactivation. Developmental Brain Research, 2001, 127, 135-148.	2.1	37
53	OLN-93 oligodendrocytes synthesize all- trans -retinoic acid in vitro. Cell and Tissue Research, 2000, 302, 49-58.	1.5	12

54Development of the visual system of the chick. Brain Research Reviews, 2000, 32, 343-379.9.1

JöRG MEY

#	Article	IF	CITATIONS
55	Retinoic acid increases BDNF-dependent regeneration of chick retinal ganglion cells in vitro. NeuroReport, 1999, 10, 3573-3577.	0.6	34
56	Retinoic aid increases arrestin mRNA levels in the mouse retina. FASEB Journal, 1997, 11, 271-275.	0.2	16
57	Retinoic Acid Synthesis in the Developing Chick Retina. Journal of Neuroscience, 1997, 17, 7441-7449.	1.7	53
58	Positional Determination of the Naso-Temporal Retinal Axis Coincides with Asymmetric Expression of Proteins along the Anterior–Posterior Axis of the Eye Primordium. Experimental Eye Research, 1996, 63, 479-492.	1.2	12
59	Old dyes for new scopes: the phagocytosis-dependent long-term fluorescence labelling of microglial cells in vivo. Trends in Neurosciences, 1994, 17, 177-182.	4.2	73
60	Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Research, 1993, 602, 304-317.	1.1	495
61	Ganglion cells in the juvenile chick retina and their ability to regenerate axons in vitro. Experimental Eye Research, 1992, 54, 377-391.	1.2	30
62	Specific transcellular staining of microglia in the adult rat after traumatic degeneration of carbocyanine-filled retinal ganglion cells. Experimental Eye Research, 1992, 55, 101-117.	1.2	65
63	Ontogenetic changes in the regenerative ability of chick retinal ganglion cells as revealed by organ explants. Cell and Tissue Research, 1991, 264, 347-355.	1.5	18