Kouichi Akahane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of ultra-high density InAs-stacked quantum dots by strain-controlled growth on InP(311)B substrate. Journal of Crystal Growth, 2002, 245, 31-36.	0.7	125
2	Heteroepitaxial growth of GaSb on Si(001) substrates. Journal of Crystal Growth, 2004, 264, 21-25.	0.7	106
3	Highly stacked quantum-dot laser fabricated using a strain compensation technique. Applied Physics Letters, 2008, 93, .	1.5	85
4	Highly packed InGaAs quantum dots on GaAs(311)B. Applied Physics Letters, 1998, 73, 3411-3413.	1.5	79
5	Fabrication of ultraâ€highâ€density InAs quantum dots using the strainâ€compensation technique. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 425-428.	0.8	72
6	Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 295-299.	1.3	69
7	High Characteristic Temperature of Highly Stacked Quantum-Dot Laser for 1.55-\$mu\$m Band. IEEE Photonics Technology Letters, 2010, 22, 103-105.	1.3	56
8	Bias-Free Operational UTC-PD above 110 GHz and Its Application to High Baud Rate Fixed-Fiber Communication and W-Band Photonic Wireless Communication. Journal of Lightwave Technology, 2016, 34, 3138-3147.	2.7	53
9	Initial growth stage of GaSb on Si(001) substrates with AlSb initiation layers. Journal of Crystal Growth, 2005, 283, 297-302.	0.7	51
10	Over 1.3μm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates. Applied Physics Letters, 2005, 86, 203118.	1.5	42
11	Photoluminescence characteristics of quantum dots with electronic states interconnected along growth direction. Journal of Applied Physics, 2008, 103, .	1.1	42
12	10-Gbps, 1-μm waveband photonic transmission with a harmonically mode-locked semiconductor laser. Optics Express, 2008, 16, 19836.	1.7	38
13	Temperature dependent carrier dynamics in telecommunication band InAs quantum dots and dashes grown on InP substrates. Journal of Applied Physics, 2013, 113, .	1.1	37
14	InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2757-2760.	1.3	36
15	Simultaneous 3 × 10 Gbps optical data transmission in 1-μm, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system. Optics Express, 2010, 18, 4695.	1.7	36
16	Formation of High-Density Quantum Dot Arrays by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, 4078-4083.	0.8	32
17	100-GHz Fiber-Fed Optical-to-Radio Converter for Radio- and Power-Over-Fiber Transmission. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 23-30.	1.9	30
18	Numerical Analysis of Ultrafast Performances of All-Optical Logic-Gate Devices Integrated With InAs QD-SOA and Ring Resonators. IEEE Journal of Quantum Electronics, 2013, 49, 51-58.	1.0	26

#	Article	IF	CITATIONS
19	Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier. Optics Express, 2014, 22, 29413.	1.7	26
20	Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 395-399.	1.3	25
21	Capture, relaxation, and recombination in two-dimensional quantum-dot superlattices. Physical Review B, 2000, 61, 16847-16853.	1.1	24
22	Self-organized InGaAs quantum dots on GaAs (311)B studied by conductive atomic force microscope tip. Journal of Applied Physics, 2001, 90, 192-196.	1.1	24
23	Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources. Japanese Journal of Applied Physics, 2012, 51, 02BG08.	0.8	23
24	Two-Dimensional In0.4Ga0.6As/GaAs Quantum Dot Superlattices Realized by Self-Organized Epitaxial Growth. Japanese Journal of Applied Physics, 1999, 38, 2934-2943.	0.8	22
25	Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System. Japanese Journal of Applied Physics, 2010, 49, 04DG03.	0.8	22
26	Extremely stable temperature characteristics of 1550-nm band, p-doped, highly stacked quantum-dot laser diodes. Japanese Journal of Applied Physics, 2017, 56, 04CH07.	0.8	22
27	Broadband light source using modulated quantum dot structures with sandwiched subâ€nano separator (SSNS) technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 328-330.	0.8	20
28	Investigation of a 1.5-µm-wavelength InAs-quantum-dot absorption layer for high-speed photodetector. Applied Physics Express, 2014, 7, 032201.	1.1	19
29	High-Quality GaSb/AlGaSb Quantum Well Grown on Si Substrate. Japanese Journal of Applied Physics, 2005, 44, L15-L17.	0.8	18
30	Highâ€density quantum dot superlattice for application to highâ€efficiency solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 619-621.	0.8	18
31	25-Gbaud 4-WDM Free-Space Optical Communication Using High-Speed 2-D Photodetector Array. Journal of Lightwave Technology, 2019, 37, 612-618.	2.7	18
32	Energy dissipation in energy transfer mediated by optical near-field interactions and their interfaces with optical far-fields. Applied Physics Letters, 2012, 100, 241102.	1.5	17
33	Role of Al in spacer layer on the formation of stacked InAs quantum dot structures on InP(311)B. Journal of Crystal Growth, 2003, 256, 7-11.	0.7	16
34	Growth of high-density InGaSb quantum dots on silicon atoms irradiated GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 322-325.	1.3	16
35	1.5μ m emission from InAs quantum dots with InGaAsSb strain-reducing layer grown on GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 81-84.	1.3	15
36	1.55-µm-Waveband Emissions from Sb-Based Quantum-Dot Vertical-Cavity Surface-Emitting Laser Structures Fabricated on GaAs Substrate. Japanese Journal of Applied Physics, 2006, 45, 3423-3426.	0.8	15

#	Article	IF	CITATIONS
37	Growth of InGaSb Quantum Dot Structures on GaAs and Silicon Substrates. Japanese Journal of Applied Physics, 2007, 46, 2401-2404.	0.8	15
38	Highly Sensitive Photodetector Using Ultra-High-Density 1.5-μm Quantum Dots for Advanced Optical Fiber Communications. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 147-153.	1.9	15
39	Optical properties of stacked InAs self-organized quantum dots on InP (311)B. Journal of Crystal Growth, 2007, 301-302, 776-780.	0.7	14
40	Ultrahigh Relative Refractive Index Contrast GaAs Nanowire Waveguides. Applied Physics Express, 2008, 1, 122101.	1.1	14
41	Detailed Design and Characterization of All-Optical Switches Based on InAs/GaAs Quantum Dots in a Vertical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1582-1589.	1.0	14
42	Gain characteristics and femto-second optical pulse response of 1550nm-band multi-stacked QD-SOA grown on InP(311)B substrate. Optics Communications, 2015, 344, 51-54.	1.0	14
43	Formation of lateral-two-dimensional ordering in self-assembled InGaAs quantum dot on high index substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 94-98.	1.3	13
44	Self-organized InGaAs quantum dots grown on GaAs (311)B substrate studied by conductive atomic force microscope technique. Journal of Crystal Growth, 2002, 245, 212-218.	0.7	13
45	Temperature dependence of photoluminescence characteristics of excitons in stacked quantum dots and quantum dot chains. Journal of Applied Physics, 2010, 107, 073506.	1.1	13
46	Narrow-line-width 131-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique. Optics Express, 2011, 19, B636.	1.7	13
47	Wide-band emissions from highly stacked quantum dot structure grown using the strain-compensation technique. Journal of Crystal Growth, 2011, 323, 154-157.	0.7	13
48	Intermixing of InP-based quantum dots and application to micro-ring resonator wavelength-selective filter for photonic integrated devices. Applied Physics Express, 2014, 7, 092801.	1.1	13
49	A WDM/TDM Access Network Based on Broad T-Band Wavelength Resource Using Quantum Dot Semiconductor Devices. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	13
50	Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices. Journal of Applied Physics, 2000, 88, 227-235.	1.1	12
51	Formation of InAs quantum dots at ultrahigh growth rates. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2735-2738.	1.3	12
52	A semiconductor optical amplifier comprising highly stacked InAs quantum dots fabricated using the strain-compensation technique. Japanese Journal of Applied Physics, 2014, 53, 04EG02.	0.8	12
53	Dual-comb-based asynchronous pump-probe measurement with an ultrawide temporal dynamic range for characterization of photo-excited InAs quantum dots. Applied Physics Express, 2020, 13, 062003.	1.1	12
54	FSO Receiver With High Optical Alignment Robustness Using High-Speed 2D-PDA and Space Diversity Technique. Journal of Lightwave Technology, 2021, 39, 1040-1047.	2.7	12

#	Article	IF	CITATIONS
55	Saturable absorption of highly stacked InAs quantum dot layer in 1.5î¼m band. Applied Physics Letters, 2006, 89, 151117.	1.5	11
56	Optical Rabi Oscillations in a Quantum Dot Ensemble. Applied Physics Express, 2010, 3, 092801.	1.1	11
57	Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2745-2748.	1.3	11
58	Fabrication of Metal Embedded Nano-Cones for Single Quantum Dot Emission. Japanese Journal of Applied Physics, 2011, 50, 06GG02.	0.8	11
59	Stable Two-Mode Emission from Semiconductor Quantum Dot Laser. Applied Physics Express, 2013, 6, 104001.	1.1	11
60	All-optical control of the resonant-photon tunneling effect observed in GaAsâ^•AlGaAs multilayered structures containing quantum dots. Applied Physics Letters, 2005, 87, 231119.	1.5	10
61	Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources. Japanese Journal of Applied Physics, 2012, 51, 02BG08.	0.8	10
62	Excitonic Rabi oscillations in self-assembled quantum dots in the presence of a local field effect. Physical Review B, 2013, 87, .	1.1	10
63	10-GHz 32-pixel 2-D photodetector array for advanced optical fiber communications. , 2017, , .		10
64	Large Submillimeter High-Speed Photodetector for Large Aperture FSO Receiver. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	10
65	(In)GaSb/AlGaSb quantum wells grown on Si substrates. Thin Solid Films, 2007, 515, 4467-4470.	0.8	9
66	Energy Transfer in Multi-Stacked InAs Quantum Dots. Japanese Journal of Applied Physics, 2011, 50, 04DH05.	0.8	9
67	Heavy and light hole transport in nominally undoped GaSb substrates. Applied Physics Letters, 2015, 106, .	1.5	9
68	Superconducting Light-Emitting Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-11.	1.9	9
69	Energy Transfer in Multi-Stacked InAs Quantum Dots. Japanese Journal of Applied Physics, 2011, 50, 04DH05.	0.8	9
70	Growth of InAsSb Quantum Dots on GaAs Substrates Using Periodic Supply Epitaxy. Japanese Journal of Applied Physics, 2005, 44, L696-L698.	0.8	8
71	Fabrication of 100 layer-stacked InAs/GaNAs strain-compensated quantum dots on GaAs (001) for application to intermediate band solar cell. , 2010, , .		8
72	Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions. ACM Journal on Emerging Technologies in Computing Systems, 2012, 8, 1-12.	1.8	8

#	Article	IF	CITATIONS
73	Effect of exciton oscillator strength on upconversion photoluminescence in GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2014, 105, .	1.5	8
74	Ensemble effect on Rabi oscillations of excitons in quantum dots. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 952-955.	0.8	7
75	The Procedure to Realize Two-Dimensional Quantum Dot Superlattices: From Incoherently Coupled to Coherently Coupled Quantum Dot Arrays. Japanese Journal of Applied Physics, 1999, 38, 1090-1093.	0.8	6
76	Growth Mechanism of Surface Dots Self-Assembled on InP (311)B Substrate. Japanese Journal of Applied Physics, 1999, 38, L720-L723.	0.8	6
77	Residual carrier density in GaSb grown on Si substrates. Thin Solid Films, 2006, 515, 748-751.	0.8	6
78	Nanoscale structure fabrication of multiple AlGaSbâ^•InGaSb quantum wells by reactive ion etching with chlorine-based gases toward photonic crystals. Journal of Vacuum Science & Technology B, 2006, 24, 2291.	1.3	6
79	Gain Measurement of Highly Stacked InGaAs Quantum Dot Laser with Hakki–Paoli Method. Japanese Journal of Applied Physics, 2013, 52, 04CG13.	0.8	6
80	Fabrication of low-density self-assembled InAs quantum dots on InP(311)B substrate by molecular beam epitaxy. Journal of Crystal Growth, 2013, 378, 450-453.	0.7	6
81	Intrinsic Trade-off between Up-Conversion and Trapping Rates in InAs Quantum Dots for Intermediate-Band Solar Cells. Physical Review Applied, 2016, 6, .	1.5	6
82	Polarization-insensitive fiber-to-fiber gain of semiconductor optical amplifier using closely stacked InAs/GaAs quantum dots. Japanese Journal of Applied Physics, 2020, 59, 032002.	0.8	6
83	Self-organized quantum dots grown on GaAs(311)B by atomic hydrogen-assisted molecular beam epitaxy. Solid-State Electronics, 1998, 42, 1613-1621.	0.8	5
84	Isolated and close-packed In0.4Ga0.6As/GaAs (311)B quantum dots. Solid State Communications, 2000, 115, 195-199.	0.9	5
85	Spatial alignment evolution of self-assembled In0.4Ga0.6As island arrays grown on GaAs (3 1 1)B surface by atomic hydrogen-assisted molecular beam epitaxy. Applied Surface Science, 2001, 185, 92-98.	3.1	5
86	Optical communications waveband lasing from Sb-based quantum dot vertical-cavity laser. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 516-519.	1.3	5
87	Negligible Pure Dephasing in InAs Self-Assembled Quantum Dots. Japanese Journal of Applied Physics, 2007, 46, 6352-6354.	0.8	5
88	Intense photoluminescence from highly stacked quantum dash structure fabricated by strain-compensation technique. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1916-1919.	1.3	5
89	Type-II InAs/GaInSb superlattices for terahertz range photodetectors. Proceedings of SPIE, 2011, , .	0.8	5
90	1.3â€Î¼m wavelengthâ€ŧunable quantumâ€dot optical frequency comb generator integrated with absorptive optical attenuator. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 282-285.	0.8	5

#	Article	IF	CITATIONS
91	Highly stacked InGaAs quantum dot laser diodes fabricated by ultrahighâ€rate molecular beam epitaxial growth technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 226-229.	0.8	5
92	Pulse modulation towards low-power operation based on the quantum beat of excitons in a GaAs/AlAs multiple quantum well. Journal Physics D: Applied Physics, 2014, 47, 105101.	1.3	5
93	High-speed photonic device technologies in optical fiber connected millimeter-wave radar system for foreign object debris detection on runways. , 2014, , .		5
94	Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications. Japanese Journal of Applied Physics, 2015, 54, 04DG01.	0.8	5
95	Effects of non-exciton components excited by broadband pulses on quantum beats in a GaAs/AlAs multiple quantum well. Scientific Reports, 2017, 7, 41496.	1.6	5
96	Effect of Charge Distribution in Quantum Dots Array on Two-Dimensional Electron Gas. Japanese Journal of Applied Physics, 2000, 39, 5746-5750.	0.8	4
97	Strikingly well-defined two-dimensional ordered arrays of In0.4Ga0.6As quantum dots grown on GaAs (311)B surface. Journal of Crystal Growth, 2001, 223, 104-110.	0.7	4
98	Sb-based quantum dots for creating novel light-emitting devices for optical communications. , 2006, , .		4
99	Characterization of highly stacked InAs quantum dot layers on InP substrate for a planar saturable absorber at 1.5 µm band. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 520-523.	0.8	4
100	Exciton coherence in semiconductor quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 162-167.	0.8	4
101	Development of broadband optical frequency resource over 8.4-THz in 1.0- $\hat{1}$ /4m waveband for photonic transport systems. , 2011, , .		4
102	Intraband relaxation process in highly stacked quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 46-49.	0.8	4
103	Dynamics of above-barrier state excitons in multi-stacked quantum dots. Journal of Applied Physics, 2011, 110, 093515.	1.1	4
104	The dependence of the characteristic temperature of highly stacked InAs quantum dot laser diodes fabricated using a strain-compensation technique on stacking layer number. , 2012, , .		4
105	High net modal gain (>100Âcm^â~'1) in 19-stacked InGaAs quantum dot laser diodes at 1000Ânm wavelength band. Optics Letters, 2013, 38, 2333.	1.7	4
106	Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies. Journal of Applied Physics, 2014, 115, 154306.	1.1	4
107	Synthesis of carbon nanotubes by laser-assisted alcohol chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 452-455.	1.3	4
108	Rapid dephasing related to intersubband transitions induced by exciton quantum beats observed by a pump-probe technique in a GaAs/AlAs multiple quantum well. Physical Review B, 2015, 91, .	1.1	4

#	Article	IF	CITATIONS
109	Anomalous optical diffraction by a phase grating induced by a local field effect in semiconductor quantum dots. Physical Review B, 2017, 95, .	1.1	4
110	Optimized design of QD-LD toward QD-SOA to achieve 35-dB maximum chip gain with 400-mA injected current. Optics Communications, 2020, 475, 126238.	1.0	4
111	Lateral-Coupling-Induced Modification of Density of States and Exciton Dynamics in High-Density Ordered In0.4Ga0.6As/GaAs(311)BQuantum Dot Arrays. Japanese Journal of Applied Physics, 2002, 41, 3766-3770.	0.8	3
112	Distinctly different two-dimensional ordering alignments of InGaAs island arrays on GaAs(311)B and AlGaAs(311)B surfaces. Journal of Crystal Growth, 2002, 234, 509-515.	0.7	3
113	Change in band configuration of quantum wells from type-II to type-I by increasing Sb composition x. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 230-233.	1.3	3
114	Site control of very low density InAs QDs on patterned GaAs nano-wire surfaces. Journal of Crystal Growth, 2007, 301-302, 846-848.	0.7	3
115	Low-temperature growth of nanostructured InGaSb semiconductors on silicon substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2195-2197.	1.3	3
116	100-GHz channel spacing and O-band quantum dot optical frequency comb generator with interference injection locking technique. , 2011, , .		3
117	Silver Embedded Nanomesas as Enhanced Single Quantum Dot Emitters in the Telecommunication C Band. Japanese Journal of Applied Physics, 2012, 51, 06FF12.	0.8	3
118	Fabrication of highly stacked quantum dots on vicinal (001) InP substrates using strainâ€compensation technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1509-1512.	0.8	3
119	Improvement of photodiode responsivity using the InAs quantum dot family for monolithic integration. , 2014, , .		3
120	Fabrication of InAs quantum dot stacked structure on InP(311)B substrate by digital embedding method. Journal of Crystal Growth, 2015, 432, 15-18.	0.7	3
121	Characteristics of highly stacked InAs quantum-dot laser grown on vicinal (001)InP substrate. Japanese Journal of Applied Physics, 2016, 55, 04EJ16.	0.8	3
122	Molecular beam epitaxy of strained-layer InAs/GaInSb superlattices for long-wavelength photodetectors. Journal of Crystal Growth, 2017, 477, 86-90.	0.7	3
123	Advantage of heteroepitaxial GaSb thin-film buffer and GaSb dot nucleation layer for GaSb/AlGaSb multiple quantum well structure grown on Si(1 0 0) substrate by molecular beam epitaxy. Journal of Crystal Growth, 2019, 507, 357-361.	0.7	3
124	High-frequency short-pulse generation with a highly stacked InAs quantum dot mode-locked laser diode. Japanese Journal of Applied Physics, 2021, 60, SBBH02.	0.8	3
125	Growth of InPBi on InP(311)B substrate by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100411.	0.8	3
126	Coherent and incoherent carrier dynamics of InGaAs quantum dots analyzed by transient photoluminescence. Journal of Luminescence, 2000, 87-89, 494-496.	1.5	2

Κουιςηι Ακαμανέ

#	Article	IF	CITATIONS
127	Two-dimensional ordering arrays of InAsxP1â^'x islands formed by As/P exchange reaction on InP (311)B surface. Journal of Crystal Growth, 2001, 233, 639-644.	0.7	2
128	Growth of InGaAs Quantum Dots on the AlGaAs(311)B Surface. Japanese Journal of Applied Physics, 2001, 40, 1870-1873.	0.8	2
129	Interface States of AlSb/InAs Heterointerface with AlAs-Like Interface. Japanese Journal of Applied Physics, 2006, 45, 3544-3547.	0.8	2
130	Scale-dependent Optical Near-fields in InAs Quantum Dots and Their Application to Non-pixelated Memory Retrieval. Applied Physics Express, 0, 1, 072101.	1.1	2
131	Characteristics of highly stacked quantum dot laser fabricated on InP(311)B substrate. , 2009, , .		2
132	Fabrication of metal/quantum dot/semiconductor structure on silicon substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2739-2741.	1.3	2
133	Highly stacked quantum dot lasers fabricated by a strain-compensation technique. , 2011, , .		2
134	Optical gain of multiâ€stacked InAs quantum dots grown on InP(311)B substrate by strainâ€compensation technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 254-256.	0.8	2
135	Excitation power dependence of nonlinear optical response of excitons in GaAs/AlAs superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 50-53.	0.8	2
136	Polarization division multiplexed 2x10-Gbps transmissions over 10-km long holey fiber in 1.0-μm waveband photonic transport system. , 2012, , .		2
137	1.3-μm waveband multiple-wavelength InAs/InGaAs quantum dot light source for wide wavelength range of 10 Gb/s transmissions over 8-km long holey fiber. , 2012, , .		2
138	Effect of the depolarization field on coherent optical properties in semiconductor quantum dots. Physical Review B, 2018, 97, .	1.1	2
139	Regional Bandgap Tailoring of 1550 nmâ€Band InAs Quantum Dot Intermixing by Controlling Ion Implantation Depth. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900521.	0.8	2
140	Fabrication of In(P)As Quantum Dots by Interdiffusion of P and As on InP(311)B Substrate. Crystals, 2020, 10, 90.	1.0	2
141	Study of high power generation in UTC-PD at 110-210 GHz. , 2018, , .		2
142	10-GHz High-Repetition Optical Short Pulse Generation from Wavelength-Tunable Quantum Dot Optical Frequency Comb Laser. IEICE Transactions on Electronics, 2013, E96.C, 187-191.	0.3	2
143	1550 nmâ€Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Sideâ€Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100453.	0.8	2
144	Monolithically Integrated Quantum-Dot Optical Modulator with Semiconductor Optical Amplifier for 1.3-1¼m Waveband Error-free 10-km-long Transmission. , 2015, , .		2

#	Article	IF	CITATIONS
145	Performances of Conventional SOAs Versus QD-SOA in 1530-nm Upstream Transmission of 40 Gb/s Access Network. IEEE Photonics Journal, 2022, 14, 1-12.	1.0	2
146	InGaAs quantum dots on GaAs(311)B substrates confined in AlGaAs barrier layers. Journal of Crystal Growth, 2001, 222, 53-57.	0.7	1
147	Different responses of localized and extended excitons to exciton–exciton scattering manifested in excitation density-dependent photoluminescence excitation spectra. Journal of Applied Physics, 2001, 89, 6171-6176.	1.1	1
148	Comparison of Optical Properties of In0.4Ga0.6As/GaAs(311)BTwo-Dimensional Quantum Dot Superlattices and Quantum Wells. Japanese Journal of Applied Physics, 2002, 41, 2807-2814.	0.8	1
149	Exciton dephasing in strain-compensated self-assembled InAs quantum dots. , 2006, 6115, 270.		1
150	Selective Formation of Self-Organized InAs Quantum Dots Grown on Patterned GaAs Substrates by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2006, 45, 3556-3559.	0.8	1
151	Optical Cavity Properties of Metal Mirror Microcavities with InAsSb Quantum Dots. Japanese Journal of Applied Physics, 2006, 45, 8650-8652.	0.8	1
152	Nano-crystalline Sb-based compound semiconductor formed on silicon. Journal of Crystal Growth, 2011, 323, 431-433.	0.7	1
153	Developing a Half-Cladding Semiconductor Photonic Device Structure for Surface Transmission of Light Waves. Japanese Journal of Applied Physics, 2011, 50, 04DG04.	0.8	1
154	Fabrication of a GaAsSb/AlAsSb distributed Bragg reflector with a highly stacked InAs quantum dash structure on InP(001) substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 235-238.	0.8	1
155	Broad-Band Electroluminescence from Highly Stacked InAs Quantum Dot at Telecom-Band. Advanced Materials Research, 2013, 871, 269-273.	0.3	1
156	Improved temperature characteristics of highly stacked InGaAs/GaAs quantum dot lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1461-1464.	0.8	1
157	Study of phonons in self-assembled InAs quantum dots embedded in an InGaAlAs matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57, 1-5.	1.3	1
158	Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission. , 2015, , .		1
159	Growth of GaSb dots nucleation layer and thin-film GaSb on Si(100) substrate by molecular beam epitaxy. , 2016, , .		1
160	Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication. Japanese Journal of Applied Physics, 2016, 55, 04EC16.	0.8	1
161	High-voltage optical power delivery using a light-wave-modulation method. , 2017, , .		1
162	Percolation of optical excitation mediated by near-field interactions. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 162-168.	1.2	1

#	Article	IF	CITATIONS
163	Evidence for various higher-subband resonances and interferences in a GaAs/AlAs asymmetric quadruple-quantum-well superlattice analyzed from its photoluminescence properties. Physical Review B, 2017, 95, .	1.1	1
164	Polarization Dependence of Photoluminescence from InAs Quantum Dots Grown on InP(311)B Substrates Using Digital Embedding Method. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700418.	0.8	1
165	Influence and its Optimal Design of Number of Stacked Layer in Quantumâ€Dot Lasers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800502.	0.8	1
166	1-μm Waveband, 12.5-Gbps Transmission with a Wavelength Tunable Single-mode Selected Quantum-dot Optical Frequency Comb Laser. , 2009, , .		1
167	Simultaneous Triple-waveband, 10-Gbps Transmission in 1-μm, C-, and L-wavebands over a 5.4-km long Holey Fiber. , 2010, , .		1
168	PAM4 Receiver based on Quantum-dot SOA Preamplifier for Short-Reach Applications. , 2020, , .		1
169	1-μm waveband, 10Gbps transmission with a wavelength tunable single-mode selected quantum-dot optical frequency comb laser. , 2009, , .		1
170	Simultaneous 3 × 10-Gbps Optical Data Transmission in 1-µm, C-, and L-wavebands Over a Single Holey Fiber for Ultrabroad-Waveband Photonic Transport System. , 2010, , .		1
171	Polarization Division Multiplexed 2×10-Gbps Optical Data Transmissions over a Holey Fiber in 1-μm-waveband Photonic Transport System. , 2011, , .		1
172	Quantum Dot Switches: Towards Nanoscale Power-Efficient All-Optical Signal Processing. , 2012, , 197-221.		1
173	Characteristics-improvement of QD semiconductor optical amplifier using rapid-thermal annealing process. , 2018, , .		1
174	Investigation of the growth mechanism and crystallographic structures of GaSb dots nucleation layer and GaSb thin film grown on Si(001) substrate by molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 032703.	0.9	1
175	Realization and characterization of two-dimensional quantum dot superlattices forming "artificial crystals― Microelectronic Engineering, 1999, 47, 131-133.	1.1	Ο
176	InGaAs Quantum Dots Embedded in p-n Junction on GaAs(311)B Substrate. Materials Research Society Symposia Proceedings, 2000, 642, 3111.	0.1	0
177	Metal–insulator transition in an In0.4Ga0.6As/GaAs(311)B quantum dot superlattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 284, 130-135.	0.9	Ο
178	Growth of antimonide compound semiconductor on Si(001) substrate. , 2006, , .		0
179	Strong optical emissions from two-dimensional metal photonic crystals with semiconductor multiple quantum wells. Journal of Applied Physics, 2007, 101, 086107.	1.1	0
180	Strain-compensated quantum dots emitting at 1.5 micron: resonant nonlinear optical properties and exciton dynamics. Proceedings of SPIE, 2007, , .	0.8	0

#	Article	IF	CITATIONS
181	Metamorphic molecular beam epitaxy growth and selective wet etching for epitaxial layer lift-off of AlAsSb toward optical waveguides with high optical confinement. Journal of Crystal Growth, 2007, 301-302, 955-958.	0.7	0
182	OTDM/WDM using optical signal processing. , 2009, , .		0
183	1-μm waveband and C-band, 10-Gbps error-free operation of ultra-broadband photonic transport system with holey fiber. Proceedings of SPIE, 2010, , .	0.8	0
184	Intraband relaxation of photoexcited carriers in multiple stacked quantum dots and quantum dot chains. , 2010, , .		0
185	Evaluation of multi-stacked InAs/GaNAs self-assembled quantum dots on GaAs (001) grown using different As species. Journal of Crystal Growth, 2011, 323, 158-160.	0.7	0
186	Narrow line-width 1.3-μm wavelength tunable InAs/InGaAs quantum dot based bench-top light source using sandwiched sub-nano separator growth technique. , 2011, , .		0
187	Photonic crystal fiber based ultra-broadband transmission system for waveband division multiplexing. Proceedings of SPIE, 2011, , .	0.8	0
188	Stacking-layer-number dependence of highly stacked InAs quantum dot laser diodes fabricated using strain-compensation technique. Proceedings of SPIE, 2012, , .	0.8	0
189	Ultra-wideband wavelength tunable optical short pulse generation from hybrid mode-locked quantum dot optical frequency comb laser. , 2012, , .		0
190	Fabrication and photoluminescence properties of semiconductor microtubes separated from substrates like bridge structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2358-2361.	0.8	0
191	Excitonic Rabi oscillations in selfâ€assembled quantum dots studied by photon echoes. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2513-2516.	0.8	0
192	3.0-μm wavelength-tunable compact light source with 805/1064-nm differential frequency generation using intracavity photon reuse and spectrum shaping techniques. , 2012, , .		0
193	Enhancement of Optical Anisotropy by Interconnection Effect along Growth Direction in Multistacked Quantum Dots. Japanese Journal of Applied Physics, 2013, 52, 012001.	0.8	0
194	Anomalous decay of photon echo in a quantum dot ensemble in the strong excitation regime. , 2013, , .		0
195	Transfer and retrieval of optical coherence to strain-compensated quantum dots using a heterodyne photon-echo technique. , 2013, , .		Ο
196	Quantum dot two-mode laser at 1.55 μm-band for 90GHz radio over fiber applications. , 2014, , .		0
197	Electro-optic devices for imaging systems using radio-over-fibre. , 2014, , .		0
198	Monolithically Integrated Quantum Dot Optical Modulator with Semiconductor Optical Amplifier		0

for High-speed Optical Data Generation. , 2015, , .

#	Article	IF	CITATIONS
199	Control of wavelength and decay time of photoluminescence for InAs quantum dots grown on InP(311)B using the digital embedding method. Physica Status Solidi (B): Basic Research, 2016, 253, 640-643.	0.7	0
200	Temperature dependence of gain in a highly stacked quantum-dot semiconductor optical amplifiier. , 2017, , .		0
201	Increase in the emission wavelength (over 1800 nm) of InAs quantum dots grown on InP substrates using a dotâ€inâ€well structure. Physica Status Solidi (B): Basic Research, 2017, 254, 1600490.	0.7	0
202	Lasing characteristics of intermixed highly-stacked quantum dot structure by ion implantation for wavelength-manipulated light sources. , 2017, , .		0
203	Dirac Semimetal States in Engineered Zeroâ€Gap InAs/GaInSb Superlattices. Physica Status Solidi (B): Basic Research, 2019, 256, 1800726.	0.7	0
204	Weak-Resonant Zero-Bias Operational High-Speed UTC-PD up to 160 Gbps Line Rate. , 2021, , .		0
205	Analysis of electric-field domain formations and carrier transport phenomena in GaAs/AlAs asymmetric double-quantum-well superlattices. Japanese Journal of Applied Physics, 2022, 61, SB1011.	0.8	0
206	Fabrication of III-V semiconductor quantum dots. , 2009, , .		0
207	Developing a Half-Cladding Semiconductor Photonic Device Structure for Surface Transmission of Light Waves. Japanese Journal of Applied Physics, 2011, 50, 04DG04.	0.8	0
208	Error-free 10-Gb/s, 11.4-km long transmission on 1.3-μm waveband photonic transport system with wavelength tunable quantum dot laser and holey fiber transmission line. , 2012, , .		0
209	Silver Embedded Nanomesas as Enhanced Single Quantum Dot Emitters in the Telecommunication C Band. Japanese Journal of Applied Physics, 2012, 51, 06FF12.	0.8	0
210	Fabrication of Ultrahigh-Density Self-assembled InAs Quantum Dots by Strain Compensation. Nano-optics and Nanophotonics, 2013, , 71-96.	0.2	0
211	A 1.55-µm Waveband Optical Absorption Characterization of an Electro-Absorption Device with a Highly Stacked InAs/InGaAlAs Quantum Dot Structure. IEICE Transactions on Electronics, 2015, E98.C, 878-881.	0.3	0
212	O-L band bias-free high-speed UTC-PD for advanced optical fiber communications. , 2018, , .		0
213	Development of Tm,Ho: YLF laser for future space-based doppler wind lidar. , 2018, , .		0
214	Ultra-Broadband Wavelength Tunable Quantum Dot (QD) Lasers and Related QD Devices for Further Photonic Network Communications. The Review of Laser Engineering, 2019, 47, 583.	0.0	0
215	Quantum state tomography of ultrafast optical pulses at telecom wavelength by broadband balanced homodyne detection. , 2019, , .		0
216	Laser characteristic and strain distribution dependent on embedding layer thickness of QD‣Ds grown on an InP(311)B substrate. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100466.	0.8	0

#	Article	IF	CITATIONS
217	CW operation and performances of 1550nm-band InAs quantum-dot monolithically-integrated lasers with quantum-dot intermixed regions. , 2020, , .		0
218	Multichannel random signal generation in optical fiber-based ring laser with quantum-dot semiconductor optical amplifier. Japanese Journal of Applied Physics, 0, , .	0.8	0
219	Improvement of Self-Heating in Quantum Dot Reflective Semiconductor Optical Amplifier for SS-OCT Application. , 2022, , .		0