Libo Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663260/publications.pdf

Version: 2024-02-01

53	1,193	20	31
papers	citations	h-index	g-index
54	54	54	898
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The East Asian wild apples, <i>Malus baccata</i> (L.) Borkh and <i>Malus hupehensis</i> (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Molecular Ecology, 2023, 32, 5125-5139.	3.9	3
2	Effect of ambient temperature on the model stability of handheld devices for predicting the apple soluble solids content. European Journal of Agronomy, 2022, 133, 126430.	4.1	3
3	Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes, 2022, 13, 160.	2.4	11
4	Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. International Journal of Molecular Sciences, 2022, 23, 976.	4.1	8
5	PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. Frontiers in Plant Science, 2022, 13, 844055.	3.6	9
6	The nutrient, hormone, and antioxidant status of scion affects the rootstock activity in apple. Scientia Horticulturae, 2022, 302, 111157.	3 . 6	3
7	MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC Plant Biology, 2022, 22, .	3.6	5
8	Identification of MdMED family, key role of MdMED81, and salicylic acid at the right time of year triggers MdMED81 to induce flowering in Malus domestica. Scientia Horticulturae, 2022, 304, 111341.	3.6	3
9	MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. Plant Science, 2021, 302, 110701.	3.6	15
10	Quality monitoring method for apples of different maturity under long-term cold storage. Infrared Physics and Technology, 2021, 112, 103580.	2.9	14
11	Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems. Planta, 2021, 253, 88.	3.2	3
12	MdKNOX15, a class I knotted-like transcription factor of apple, controls flowering and plant height by regulating GA levels through promoting the MdGA20x7 transcription. Environmental and Experimental Botany, 2021, 185, 104411.	4.2	16
13	Molecular mechanism of MdWUS2–MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 2021, 72, 4822-4838.	4.8	10
14	Transcriptome analysis reveals the inhibitory nature of high nitrate during adventitious roots formation in the apple rootstock. Physiologia Plantarum, 2021, 173, 867-882.	5. 2	16
15	Regulation of Flowering Time by Improving Leaf Health Markers and Expansion by Salicylic Acid Treatment: A New Approach to Induce Flowering in Malus domestica. Frontiers in Plant Science, 2021, 12, 655974.	3. 6	6
16	Identification of apple TFL1-interacting proteins uncovers an expanded flowering network. Plant Cell Reports, 2021, 40, 2325-2340.	5.6	9
17	ITRAQ-based proteomic analysis of apple buds provides new insights into regulatory mechanisms of flowering in response to shoot bending. Scientia Horticulturae, 2021, 290, 110526.	3 . 6	1
18	Modification of the effect of maturity variation on nondestructive detection of apple quality based on the compensation model. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 267, 120598.	3.9	5

#	Article	IF	Citations
19	Chronic cement dust load induce novel damages in foliage and buds of Malus domestica. Scientific Reports, 2020, 10, 12186.	3.3	29
20	Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Scientific Reports, 2020, 10, 17426.	3.3	10
21	Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 2020, 20, 438.	3.6	14
22	Determination of bagged †Fuji†apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Physics and Technology, 2020, 111, 103529.	2.9	29
23	Epigenomic Regulatory Mechanism in Vegetative Phase Transition of <i>Malus hupehensis</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 4812-4829.	5.2	10
24	Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. Frontiers in Plant Science, 2020, 11, 128.	3.6	24
25	Identification of CDF family members in apple and their expression in response to sucrose during floral induction. Journal of Plant Interactions, 2020, 15, 241-256.	2.1	6
26	Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Scientific Reports, 2020, 10, 10866.	3.3	14
27	Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. Journal of Agricultural and Food Chemistry, 2020, 68, 4699-4716.	5.2	32
28	Transcriptome Analysis Reveals New Insights into <i>MdBAK1</i> -Mediated Plant Growth in <i>Malus domestica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9757-9771.	5.2	9
29	Effects of Chronic Dust Load On Leaf Pigments of the Landscape Plant Murraya Paniculata. Gesunde Pflanzen, 2019, 71, 249-258.	3.0	10
30	Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (<i>Malus domestica</i> Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. Plant and Cell Physiology, 2019, 60, 1702-1721.	3.1	27
31	Sequencing of a Wild Apple (<i>Malus baccata</i>) Genome Unravels the Differences Between Cultivated and Wild Apple Species Regarding Disease Resistance and Cold Tolerance. G3: Genes, Genomes, Genetics, 2019, 9, 2051-2060.	1.8	47
32	Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. Frontiers in Plant Science, 2019, 10, 616.	3.6	38
33	Cement dust induce stress and attenuates photosynthesis in Arachis hypogaea. Environmental Science and Pollution Research, 2019, 26, 19490-19501.	5.3	11
34	Transcriptomic analysis reveals the regulatory module of apple (Malus \tilde{A} — domestica) floral transition in response to 6-BA. BMC Plant Biology, 2019, 19, 93.	3.6	25
35	miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. Plant Physiology and Biochemistry, 2019, 139, 66-81.	5.8	36
36	Genome-wide identification, characterization and expression analysis of novel long non-coding RNAs that mediate IBA-induced adventitious root formation in apple rootstocks. Plant Growth Regulation, 2019, 87, 287-302.	3.4	21

#	Article	IF	Citations
37	Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). Plant Molecular Biology, 2019, 99, 45-66.	3.9	21
38	Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering â€~Qinguan' and weakly flowering â€~Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18, 370.	3.6	19
39	Genome-wide Identification, Classification, Molecular Evolution and Expression Analysis of Malate Dehydrogenases in Apple. International Journal of Molecular Sciences, 2018, 19, 3312.	4.1	15
40	Expression of genes in the potential regulatory pathways controlling alternate bearing in â€ [™] (Malus domestica Borkh.) apple trees during flower induction. Plant Physiology and Biochemistry, 2018, 132, 579-589.	5.8	15
41	Identification and Characterization of miRNAs in Self-Rooted and Grafted Malus Reveals Critical Networks Associated with Flowering. International Journal of Molecular Sciences, 2018, 19, 2384.	4.1	13
42	Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. International Journal of Molecular Sciences, 2018, 19, 2201.	4.1	48
43	A transcriptome analysis of two apple (Malusâ€Ã—â€domestica) cultivars with different flowering abilities reveals a gene network module associated with floral transitions. Scientia Horticulturae, 2018, 239, 269-281.	3.6	20
44	Phylogenetic analysis of IDD gene family and characterization of its expression in response to flower induction in Malus. Molecular Genetics and Genomics, 2017, 292, 755-771.	2.1	29
45	Identification of TPS family members in apple (Malus x domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry, 2017, 120, 10-23.	5.8	34
46	Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the †Nagafu No. 2†and †Qinguan†Varieties of Apple (Malus domestica Borkh.). Frontiers in Plant Science, 2016, 7, 908.	3.6	33
47	Shoot bending promotes flower bud formation by mi <scp>RNA</scp> â€mediated regulation in apple (<i><scp>M</scp>alus domestica </i> <scp>B</scp> orkh.). Plant Biotechnology Journal, 2016, 14, 749-770.	8.3	69
48	Proteome Analyses Using iTRAQ Labeling Reveal Critical Mechanisms in Alternate Bearing <i>Malus prunifolia</i> . Journal of Proteome Research, 2016, 15, 3602-3616.	3.7	30
49	Effect of exogenous GA 3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in â€~Fuji' apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 2016, 107, 178-186.	5.8	92
50	Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in †Fuji' apple (Malus domestica Borkh). Plant Growth Regulation, 2016, 79, 65-70.	3.4	43
51	Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (<i>Malus domestica</i> Borkh.). Plant and Cell Physiology, 2015, 56, 2052-2068.	3.1	118
52	Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics, 2014, 15, 1125.	2.8	60
53	MdNup54 Interactions With MdHSP70 Involved in Flowering in Apple. Frontiers in Plant Science, 0, 13, .	3.6	1