List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666301/publications.pdf Version: 2024-02-01

		4955	9090
331	23,942	84	144
papers	citations	h-index	g-index
336	336	336	14131
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonlinear Thermopower Behaviour of N-Type Carbon Nanofibres and Their Melt Mixed Polypropylene Composites. Polymers, 2022, 14, 269.	2.0	5
2	Thermoelectric Performance of Polypropylene/Carbon Nanotube/Ionic Liquid Composites and Its Dependence on Electron Beam Irradiation. Journal of Composites Science, 2022, 6, 25.	1.4	10
3	Distribution of Carbon Nanotubes in Polycarbonate-Based Blends for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 662-677.	2.4	18
4	CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding. International Journal of Molecular Sciences, 2022, 23, 2610.	1.8	13
5	The effect of polymer molecular weights on the electrical, rheological, and vapor sensing behavior of polycarbonate/multiâ€walled carbon nanotube nanocomposites. Polymer Composites, 2022, 43, 5095-5106.	2.3	6
6	Conductive, Strong and Tough Reduced Graphene Oxide-based composite film for infrared camouflage application. Composites Part B: Engineering, 2022, 242, 109998.	5.9	9
7	Three-Dimensional Printed and Biocompatible Conductive Composites Comprised of Polyhydroxybutyrate and Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2021, 60, 885-897.	1.8	12
8	Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing. Applied Sciences (Switzerland), 2021, 11, 2580.	1.3	8
9	The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component. Molecules, 2021, 26, 1312.	1.7	2
10	High-Power All-Carbon Fully Printed and Wearable SWCNT-Based Organic Thermoelectric Generator. ACS Applied Materials & Interfaces, 2021, 13, 11151-11165.	4.0	49
11	Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes. Nanomaterials, 2021, 11, 1146.	1.9	9
12	Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient. Polymer Journal, 2021, 53, 1145-1152.	1.3	7
13	A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS. Applied Energy, 2021, 294, 117004.	5.1	16
14	Highly Tunable Piezoresistive Behavior of Carbon Nanotube-Containing Conductive Polymer Blend Composites Prepared from Two Polymers Exhibiting Crystallization-Induced Phase Separation. ACS Applied Materials & Interfaces, 2021, 13, 43333-43347.	4.0	8
15	Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution. Nanoscale Advances, 2021, 3, 2632-2648.	2.2	10
16	High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn ²⁺ -Substituted CoFe ₂ O ₄ Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS Omega, 2021, 6, 28098-28118.	1.6	22
17	Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Progress in Polymer Science, 2021, 123, 101471.	11.8	55
18	Graphite modified epoxy-based adhesive for joining of aluminium and PP/graphite composites. Journal of Adhesion, 2020, 96, 229-252.	1.8	1

#	Article	IF	CITATIONS
19	Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material. Journal of Applied Polymer Science, 2020, 137, 48428.	1.3	31
20	MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids. Materials Research Express, 2020, 7, 015337.	0.8	7
21	Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic) Tj ETQq1 1 0.784314 rg	BT /Qverlo	ock 10 Tf 50 $ m \ramedia{24}{0}$
22	High-Performance Wearable Strain Sensor Based on Graphene/Cotton Fabric with High Durability and Low Detection Limit. ACS Applied Materials & Interfaces, 2020, 12, 1474-1485.	4.0	125
23	Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Composites Part B: Engineering, 2020, 183, 107663.	5.9	67
24	Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives. Journal of Composites Science, 2020, 4, 105.	1.4	5
25	Aerogels Based on Reduced Graphene Oxide/Cellulose Composites: Preparation and Vapour Sensing Abilities. Nanomaterials, 2020, 10, 1729.	1.9	9
26	Tuning the Piezoresistive Behavior of Poly(Vinylidene Fluoride)/Carbon Nanotube Composites Using Poly(Methyl Methacrylate). ACS Applied Materials & Interfaces, 2020, 12, 43125-43137.	4.0	23
27	Effect of Filler Synergy and Cast Film Extrusion Parameters on Extrudability and Direction-Dependent Conductivity of PVDF/Carbon Nanotube/Carbon Black Composites. Polymers, 2020, 12, 2992.	2.0	7
28	Lightweight Polymer-Carbon Composite Current Collector for Lithium-Ion Batteries. Batteries, 2020, 6, 60.	2.1	10
29	3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators. Additive Manufacturing, 2020, 34, 101281.	1.7	54
30	Nanocomposites with p- and n-Type Conductivity Controlled by Type and Content of Nanotubes in Thermosets for Thermoelectric Applications. Nanomaterials, 2020, 10, 1144.	1.9	6
31	Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?. Journal of Composites Science, 2020, 4, 9.	1.4	10
32	Boron Doping of SWCNTs as a Way to Enhance the Thermoelectric Properties of Melt-Mixed Polypropylene/SWCNT Composites. Energies, 2020, 13, 394.	1.6	20
33	Multifunctional Cellulose/rGO/Fe ₃ O ₄ Composite Aerogels for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 22088-22098.	4.0	136
34	Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer, 2020, 200, 122577.	1.8	22
35	Tuning the Structure and Performance of Bulk and Porous Vapor Sensors Based on Co-continuous Carbon Nanotube-Filled Blends of Poly(vinylidene fluoride) and Polycarbonates by Varying Melt Viscosity. ACS Applied Materials & Interfaces, 2020, 12, 45404-45419.	4.0	17
36	Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. Nano Express, 2020, 1, 030032.	1.2	1

#	Article	IF	CITATIONS
37	Messanlage zur Untersuchung des Seebeck-Effektes in Polymermaterialien. TM Technisches Messen, 2020, 87, 495-503.	0.3	17
38	Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient. Journal of Composites Science, 2020, 4, 14.	1.4	22
39	Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers. Polymers, 2019, 11, 1073.	2.0	42
40	Nuomici-Inspired Universal Strategy for Boosting Piezoresistive Sensitivity and Elasticity of Polymer Nanocomposite-Based Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 35362-35370.	4.0	16
41	Development of joining methods for highly filled graphite/PP composite based bipolar plates for fuel cells: Adhesive joining and welding. AIP Conference Proceedings, 2019, , .	0.3	2
42	Improvement of electrical resistivity of highly filled graphite/PP composite based bipolar plates for fuel cells by addition of carbon black. AIP Conference Proceedings, 2019, , .	0.3	9
43	Melt mixed composites of polypropylene with singlewalled carbon nanotubes for thermoelectric applications: Switching from p- to n-type behavior by additive addition. AIP Conference Proceedings, 2019, , .	0.3	9
44	Elucidating the Chemistry behind the Reduction of Graphene Oxide Using a Green Approach with Polydopamine. Nanomaterials, 2019, 9, 902.	1.9	38
45	Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures. Materials and Design, 2019, 179, 107897.	3.3	8
46	The Effect of Foaming on the Properties of Carbon Nanotubes/Polymer Composites. , 2019, , 235-254.		0
47	Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells. Smart Materials and Structures, 2019, 28, 064004.	1.8	8
48	Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications. Polymers, 2019, 11, 462.	2.0	46
49	Direction Dependent Electrical Conductivity of Polymer/Carbon Filler Composites. Polymers, 2019, 11, 591.	2.0	23
50	Multi-layered stack consisting of PVDF nanocomposites with flow-induced oriented MWCNT structure can supress electromagnetic radiation. Composites Part B: Engineering, 2019, 166, 749-757.	5.9	45
51	Vanadium salt assisted solvothermal reduction of graphene oxide and the thermoelectric characterisation of the reduced graphene oxide in bulk and as composite. Materials Chemistry and Physics, 2019, 229, 319-329.	2.0	12
52	Synthesis and characterization of graphene derivatives for application in magnetic high-field induction heating. AIP Conference Proceedings, 2019, , .	0.3	5
53	Influence of a supplemental filler in twin-screw extruded PP/CNT composites using masterbatch dilution. AIP Conference Proceedings, 2019, , .	0.3	5
54	The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties. Polymers, 2019, 11, 122.	2.0	17

#	Article	IF	CITATIONS
55	Melt-Mixed PP/MWCNT Composites: Influence of CNT Incorporation Strategy and Matrix Viscosity on Filler Dispersion and Electrical Resistivity. Polymers, 2019, 11, 189.	2.0	38
56	Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties. Journal of Composites Science, 2019, 3, 106.	1.4	38
57	Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications. Polymer Composites, 2019, 40, 3189-3198.	2.3	43
58	Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Polymers, 2019, 11, 11.	2.0	118
59	Competition effect of shearâ€induced nuclei and multiwalled carbon nanotubes (MWCNT) on βâ€isotactic polypropylene (<i>i</i> PP) formation in preshear injectionâ€molded <i>i</i> PP/MWCNT nanocomposites. Polymer Composites, 2018, 39, E1149.	2.3	6
60	A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Composites Science and Technology, 2018, 156, 276-286.	3.8	276
61	All-aromatic SWCNT-Polyetherimide nanocomposites for thermal energy harvesting applications. Composites Science and Technology, 2018, 156, 158-165.	3.8	55
62	Looking back to interfacial tension prediction in the compatibilized polymer blends: Discrepancies between theories and experiments. Journal of Applied Polymer Science, 2018, 135, 46144.	1.3	10
63	Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Composites Science and Technology, 2018, 163, 133-140.	3.8	72
64	Smart cellulose/graphene composites fabricated by <i>in situ</i> chemical reduction of graphene oxide for multiple sensing applications. Journal of Materials Chemistry A, 2018, 6, 7777-7785.	5.2	118
65	Vapor sensing performance as a diagnosis probe to estimate the distribution of multi-walled carbon nanotubes in poly(lactic acid)/polypropylene conductive composites. Sensors and Actuators B: Chemical, 2018, 255, 2809-2819.	4.0	41
66	Flexible poly(styrene-butadiene-styrene)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range, and fast response. Sensors and Actuators B: Chemical, 2018, 256, 896-904.	4.0	43
67	Electrical and melt rheological characterization of PC and coâ€continuous PC/SAN blends filled with CNTs: Relationship between meltâ€mixing parameters, filler dispersion, and filler aspect ratio. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 79-88.	2.4	29
68	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	3.8	157
69	Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices. Polymer, 2018, 159, 75-85.	1.8	47
70	Melt Processed Conductive Polycarbonate Composites With Ternary Fillers Towards Bipolar Plate Applications. , 2018, , .		2
71	Electrical and vapor sensing behaviors of polycarbonate composites containing hybrid carbon fillers. European Polymer Journal, 2018, 108, 461-471.	2.6	12
72	PVDF–MWNT interactions control process induced β-lamellar morphology and orientation in the nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 24821-24831.	1.3	11

#	Article	IF	CITATIONS
73	Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?. ACS Omega, 2018, 3, 5771-5782.	1.6	58
74	Effects of Particle Size and Surface Chemistry on the Dispersion of Graphite Nanoplates in Polypropylene Composites. Polymers, 2018, 10, 222.	2.0	25
75	Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites. ACS Omega, 2018, 3, 9966-9980.	1.6	16
76	Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling. Polymers, 2018, 10, 925.	2.0	71
77	Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor. , 2018, , .		2
78	Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites. , 2018, , .		5
79	TIME AND TEMPERATURE DEPENDENT PIEZORESISTIVE BEHAVIOR OF CONDUCTIVE ELASTOMERIC COMPOSITES. Rubber Chemistry and Technology, 2018, 91, 651-667.	0.6	12
80	Nonisothermal crystallization kinetic study and thermal stability of multiwalled carbon nanotube reinforced poly(phenylene sulfide) composites. Polymer Composites, 2017, 38, 604-615.	2.3	7
81	Strong Strain Sensing Performance of Natural Rubber Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 4860-4872.	4.0	125
82	An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly(vinylidene fluoride)/Carbon Nanotube Composites. ACS Applied Materials & Interfaces, 2017, 9, 5437-5446.	4.0	52
83	Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2017, 96, 28-36.	3.8	80
84	3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites. Proceedings of SPIE, 2017, , .	0.8	8
85	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	3.8	155
86	Impact of synthesis temperature on morphology, rheology and electromagnetic interference shielding of CVD-grown carbon nanotube/polyvinylidene fluoride nanocomposites. Synthetic Metals, 2017, 230, 39-50.	2.1	45
87	3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials and Design, 2017, 131, 394-401.	3.3	352
88	Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: Carbon nanotubes in polypropylene. Polymer, 2017, 116, 160-172.	1.8	48
89	Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol. Polymer, 2017, 108, 513-520.	1.8	62
90	The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Composites Science and Technology, 2017, 139, 64-73.	3.8	300

#	Article	IF	CITATIONS
91	Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer, 2017, 129, 179-188.	1.8	53
92	Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites. ChemistrySelect, 2017, 2, 5984-5999.	0.7	14
93	Polymer - Carbon nanotube composites for thermoelectric applications. AIP Conference Proceedings, 2017, , .	0.3	8
94	Preparation of polystyrene nanocomposites with functionalized carbon nanotubes by melt and solution mixing: Investigation of dispersion, melt rheology, electrical and thermal properties. Polymer, 2017, 132, 325-341.	1.8	44
95	Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating. Composites Science and Technology, 2017, 138, 134-143.	3.8	23
96	Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites. AIP Conference Proceedings, 2017, , .	0.3	1
97	Influence of matrix crystallinity on electrical percolation of multiwalled carbon nanotubes in polypropylene. AIP Conference Proceedings, 2017, , .	0.3	7
98	Influence of mixing conditions on carbon nanotube shortening and curling in polycarbonate composites. AIP Conference Proceedings, 2017, , .	0.3	3
99	PP/SWCNT composites modified with ionic liquid. AIP Conference Proceedings, 2017, , .	0.3	3
100	Thermal conductivity of hybrid filled HDPE nanocomposites. AIP Conference Proceedings, 2017, , .	0.3	2
101	Melt mixing functionalized graphite nanoplates into PC/SAN blends. AIP Conference Proceedings, 2017,	0.3	3
102	Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites. Materials, 2017, 10, 545.	1.3	27
103	Impact of synthesis temperature on structure of carbon nanotubes and morphological and electrical characterization of their polymeric nanocomposites. AIP Conference Proceedings, 2017, , .	0.3	2
104	Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites. AIP Conference Proceedings, 2017, , .	0.3	7
105	MECHANISMS OF ACTION OF ANTISTATIC AGENTS. , 2016, , 83-101.		1
106	Development of a polymer composite with high electrical conductivity and improved impact strength for the application as bipolar plate. AIP Conference Proceedings, 2016, , .	0.3	4
107	Electrical and thermal conductivity of polypropylene filled with combinations of carbon fillers. AIP Conference Proceedings, 2016, , .	0.3	14
108	Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon, 2016, 106, 260-278.	5.4	99

#	Article	IF	CITATIONS
109	Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres containing multi-wall carbon nanotubes. Polymer, 2016, 97, 80-94.	1.8	22
110	Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. ACS Applied Materials & Interfaces, 2016, 8, 14190-14199.	4.0	163
111	A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions. Materials and Design, 2016, 111, 253-262.	3.3	23
112	Melt mixed SWCNT-polypropylene composites with very low electrical percolation. Polymer, 2016, 98, 45-50.	1.8	59
113	Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon, 2016, 98, 358-372.	5.4	202
114	Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensors and Actuators A: Physical, 2016, 239, 102-113.	2.0	109
115	Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. Journal of Materials Chemistry C, 2016, 4, 157-166.	2.7	484
116	Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer, 2016, 82, 181-189.	1.8	110
117	Quantifying the synergistic effect of dispersion state and interfacial adhesion contributions on impact strength of core shell rubber-toughened glassy polymers. RSC Advances, 2016, 6, 3377-3385.	1.7	5
118	Electrical Conductive Surface Functionalization of Polycarbonate Parts with CNT Composite Films during Injection Molding. Plastic and Polymer Technology, 2016, 4, 41.	0.3	2
119	Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications. AIMS Materials Science, 2016, 3, 1107-1116.	0.7	29
120	Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites. AIP Conference Proceedings, 2015, , .	0.3	0
121	Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites. AlP Conference Proceedings, 2015, , .	0.3	16
122	Influence of hybrid nano-filler on the crystallization behaviour and interfacial interaction in polyamide 6 based hybrid nano-composites. Physical Chemistry Chemical Physics, 2015, 17, 9410-9419.	1.3	30
123	Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach. Polymer, 2015, 66, 210-221.	1.8	24
124	Nanoporous Cathodes for High-Energy Li–S Batteries from Gyroid Block Copolymer Templates. ACS Nano, 2015, 9, 6147-6157.	7.3	82
125	Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon, 2015, 93, 819-829.	5.4	158
126	Tuning of vapor sensing behaviors of eco-friendly conductive polymer composites utilizing ramie fiber. Sensors and Actuators B: Chemical, 2015, 221, 1279-1289.	4.0	64

#	Article	IF	CITATIONS
127	Hotmelts with improved properties by integration of carbon nanotubes. International Journal of Adhesion and Adhesives, 2015, 62, 63-68.	1.4	9
128	A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy, 2015, 15, 54-65.	8.2	108
129	Carbon nanotube–cellulose composite aerogels for vapour sensing. Sensors and Actuators B: Chemical, 2015, 213, 20-26.	4.0	95
130	Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Composites Science and Technology, 2015, 114, 119-125.	3.8	71
131	The simultaneous addition of styrene maleic anhydride copolymer and multiwall carbon nanotubes during melt-mixing on the morphology of binary blends of polyamide6 and acrylonitrile butadiene styrene copolymer. Polymer Engineering and Science, 2015, 55, 457-465.	1.5	17
132	Liquidâ€sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene composites: A comparative study. Polymer Composites, 2015, 36, 205-213.	2.3	8
133	Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon, 2014, 71, 206-217.	5.4	361
134	Electromagnetic interference shielding effectiveness of MWCNT filled poly(ether sulfone) and poly(ether imide) nanocomposites. Polymer Engineering and Science, 2014, 54, 2560-2570.	1.5	32
135	Aspect ratio effects of multiâ€walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 73-83.	2.4	101
136	Achieving β-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes. Polymer, 2014, 55, 611-619.	1.8	145
137	Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions. Polymer, 2014, 55, 6335-6344.	1.8	16
138	Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Composites Science and Technology, 2014, 101, 133-138.	3.8	94
139	Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites. Polymer, 2014, 55, 5381-5388.	1.8	68
140	Crystallization of poly(ε-caprolactone)/MWCNT composites: A combined SAXS/WAXS, electrical and thermal conductivity study. Polymer, 2014, 55, 2220-2232.	1.8	80
141	Localization of carbon nanotubes in polyamide 6 blends with non-reactive and reactive rubber. Polymer, 2014, 55, 3062-3067.	1.8	14
142	Kinetics of nucleation and crystallization of poly(ε-caprolactone) – Multiwalled carbon nanotube composites. European Polymer Journal, 2014, 52, 1-11.	2.6	126
143	Ethylene-vinyl Acetate Thermoplastic Copolymers Filled with Multiwall Carbon Nanotubes: Effect of Hydrothermal Ageing on Mechanical, Thermal, and Electrical Properties. Macromolecular Materials and Engineering, 2014, 299, 41-50.	1.7	10
144	Single Polymer Composites of Poly(Butylene Terephthalate) Microfibrils Loaded with Carbon Nanotubes Exhibiting Electrical Conductivity and Improved Mechanical Properties. Macromolecular Materials and Engineering, 2014, 299, 799-806.	1.7	49

#	Article	IF	CITATIONS
145	Achieving Electrical Conductive Tracks by Laser Treatment of non-Conductive Polypropylene/Polycarbonate Blends Filled with MWCNTs. Macromolecular Materials and Engineering, 2014, 299, 869-877.	1.7	11
146	Dynamic-mechanical analysis of MWNTs-filled PC/ABS blends. Polymer Engineering and Science, 2014, 54, 2696-2706.	1.5	4
147	Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT. , 2014, , .		1
148	Poly(lactic acid) composites with poly(lactic acid)â€modified carbon nanotubes. Journal of Polymer Science Part A, 2013, 51, 3740-3750.	2.5	33
149	Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Composites Science and Technology, 2013, 74, 78-84.	3.8	43
150	Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites. Polymer, 2013, 54, 5391-5398.	1.8	3
151	A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends ofÂPC and SAN. Polymer, 2013, 54, 5875-5882.	1.8	66
152	Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties. Polymer, 2013, 54, 6801-6808.	1.8	102
153	Influence of shear deformation on the electrical and rheological properties of combined filler networks in polymer melts: Carbon nanotubes and carbon black in polycarbonate. Polymer, 2013, 54, 5865-5874.	1.8	45
154	Influence of talc with different particle sizes in meltâ€mixed LLDPE/MWCNT composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1680-1691.	2.4	16
155	Influence of peroxide addition on the morphology and properties of polypropylene – multiwalled carbon nanotube nanocomposites. Composites Science and Technology, 2013, 84, 78-85.	3.8	13
156	Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer, 2013, 54, 3071-3078.	1.8	80
157	MWNTâ€filled PC/ABS blends: Correlation of morphology with rheological and electrical response. Journal of Applied Polymer Science, 2013, 130, 739-748.	1.3	41
158	Characterization of Dispersability of Industrial Nanotube Materials and their Length Distribution Before and After Melt Processing. RSC Nanoscience and Nanotechnology, 2013, , 212-233.	0.2	2
159	Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature. Polymer, 2013, 54, 3723-3729.	1.8	45
160	Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study. EXPRESS Polymer Letters, 2013, 7, 607-620.	1.1	16
161	Nanosensor technology based on semiconductor nanocrystals. Proceedings of SPIE, 2012, , .	0.8	0
162	Melt Mixed Polymer-MWCNT Composites for Liquid Sensing Applications. Materials Research Society Symposia Proceedings, 2012, 1410, 25.	0.1	0

#	Article	IF	CITATIONS
163	A STOCHASTIC SHAPE AND ORIENTATION MODEL FOR FIBRES WITH AN APPLICATION TO CARBON NANOTUBES. Image Analysis and Stereology, 2012, 31, 17.	0.4	11
164	Polymer-Carbon Nanotube Composites: Melt Processing, Properties and Applications. , 2012, , 145-191.		4
165	Polymer/carbon nanotube composites for liquid sensing: Selectivity against different solvents. Polymer, 2012, 53, 2908-2918.	1.8	45
166	A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive. Polymer, 2012, 53, 3079-3083.	1.8	52
167	Filler dispersion and electrical properties of polyamide 12/MWCNT-nanocomposites produced in reactive extrusion via anionic ring-opening polymerization. Composites Science and Technology, 2012, 72, 1671-1677.	3.8	10
168	Methods to Characterize the Dispersability of Carbon Nanotubes and Their Length Distribution. Chemie-Ingenieur-Technik, 2012, 84, 263-271.	0.4	3
169	Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer, 2012, 53, 4-28.	1.8	468
170	The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer, 2012, 53, 411-421.	1.8	109
171	The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer, 2012, 53, 495-504.	1.8	227
172	Percolation behavior and mehanical properties of polycarbonate composites filled with carbon black/carbon nanotube systems. Polimery, 2012, 57, 204-211.	0.4	23
173	Carbon nanotubes in multiphase polymer blends. , 2011, , 587-620.		5
174	Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend during Melt Mixing. Macromolecules, 2011, 44, 6094-6102.	2.2	263
175	Multifilament fibres of poly(É›-caprolactone)/poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone. Sensors and Actuators B: Chemical, 2011, 160, 22-31.	4.0	28
176	Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer, 2011, 52, 3835-3845.	1.8	156
177	Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes. Composites Science and Technology, 2011, 71, 1451-1460.	3.8	50
178	Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Composites Science and Technology, 2011, 71, 1535-1542.	3.8	87
179	Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Composites Science and Technology, 2011, 71, 1936-1943.	3.8	83
180	Tuning the localization of functionalized MWCNTs in SAN/PC blends by a reactive component. Composites Science and Technology, 2011, 72, 41-48.	3.8	69

#	Article	IF	CITATIONS
181	Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Composites Science and Technology, 2011, 71, 1145-1153.	3.8	128
182	Synthesis of pyreneâ€capped polystyrene for dispersion of pristine singleâ€walled carbon nanotubes. Polymer International, 2011, 60, 1425-1433.	1.6	24
183	Liquid sensing: smart polymer/CNT composites. Materials Today, 2011, 14, 340-345.	8.3	110
184	Influence of Screw Speed on Electrical and Rheological Percolation of Meltâ€Mixed Highâ€Impact Polystyrene/MWCNT Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 59-69.	1.7	66
185	Characterization of the State of Dispersion of Carbon Nanotubes in Polymer Nanocomposites. Chemie-Ingenieur-Technik, 2011, 83, 767-781.	0.4	20
186	A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing. Carbon, 2011, 49, 1243-1247.	5.4	139
187	Melt mixed nano composites of PA12 with MWNTs: Influence of MWNT and matrix properties on macrodispersion and electrical properties. Composites Science and Technology, 2011, 71, 306-314.	3.8	77
188	Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties. Composites Science and Technology, 2011, 71, 854-862.	3.8	143
189	Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Composites Science and Technology, 2011, 71, 1053-1059.	3.8	157
190	Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer, 2011, 52, 1027-1036.	1.8	117
191	Polymer/carbon nanotube composites for liquid sensing: Model for electrical response characteristics. Polymer, 2011, 52, 2276-2285.	1.8	58
192	Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sensors and Actuators B: Chemical, 2011, 156, 63-70.	4.0	71
193	Influence of material and processing parameters on carbon nanotube dispersion in polymer melts. , 2011, , 92-132.		25
194	Quantification of dispersion and distribution of carbon nanotubes in polymer composites using microscopy techniques. , 2011, , 265-294.		3
195	Introduction to polymer–carbon nanotube composites. , 2011, , xxi-xxvii.		10
196	Polymer–carbon nanotube composites. , 2011, , .		50
197	Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 2010, 70, 2045-2055.	3.8	213
198	Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer, 2010, 51, 2708-2720.	1.8	209

#	Article	IF	CITATIONS
199	Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 2010, 48, 2603-2612.	5.4	67
200	Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. European Polymer Journal, 2010, 46, 854-868.	2.6	186
201	Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites. Composites Science and Technology, 2010, 70, 151-160.	3.8	55
202	Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Composites Science and Technology, 2010, 70, 343-349.	3.8	159
203	Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon, 2010, 48, 2746-2754.	5.4	220
204	Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. European Polymer Journal, 2010, 46, 928-936.	2.6	99
205	Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites. Journal of Materials Research, 2010, 25, 1118-1130.	1.2	6
206	Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styreneâ€acrylonitrile). Macromolecular Rapid Communications, 2009, 30, 423-429.	2.0	312
207	Plasma Functionalization of Multiwalled Carbon Nanotube Bucky Papers and the Effect on Properties of Meltâ€Mixed Composites with Polycarbonate. Macromolecular Rapid Communications, 2009, 30, 1828-1833.	2.0	31
208	Melt Dispersion and Electrospinning of Nonâ€Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromolecular Rapid Communications, 2009, 30, 2102-2106.	2.0	42
209	Influence of processing conditions in smallâ€scale melt mixing and compression molding on the resistivity and morphology of polycarbonate–MWNT composites. Journal of Applied Polymer Science, 2009, 112, 3494-3509.	1.3	135
210	A comparative study on the electrical and mechanical behaviour of multiâ€walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. Journal of Applied Polymer Science, 2009, 113, 2536-2551.	1.3	141
211	Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Composites Science and Technology, 2009, 69, 365-372.	3.8	193
212	Influence of multiwall carbon nanotubes on the mechanical properties and unusual crystallization behavior in meltâ€mixed coâ€continuous blends of polyamide6 and acrylonitrile butadiene styrene. Polymer Engineering and Science, 2009, 49, 1533-1543.	1.5	49
213	Structure–property relationships in polyamide 6/multiâ€walled carbon nanotubes nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 764-774.	2.4	113
214	Spatial statistics of carbon nanotube polymer composites. Polymer, 2009, 50, 2123-2132.	1.8	78
215	Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer, 2009, 50, 5103-5111.	1.8	142
216	Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 2009, 69, 1505-1515.	3.8	215

#	Article	IF	CITATIONS
217	Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers. Carbon, 2009, 47, 602-612.	5.4	111
218	Investigation of liquid sensing mechanism of poly(lactic acid)/multi-walled carbon nanotube composite films. Smart Materials and Structures, 2009, 18, 035008.	1.8	55
219	Comparisons Among Electrical and Rheological Properties of Melt-Mixed Composites Containing Various Carbon Nanostructures. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 47, 12-19.	1.2	54
220	Structure and Mechanical Properties of Transparent ZnO/PBDMA Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2739-2745.	0.9	14
221	Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 2008, 49, 974-984.	1.8	344
222	Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy. Polymer, 2008, 49, 3524-3532.	1.8	230
223	Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 2008, 49, 3500-3509.	1.8	378
224	Rheology, electrical conductivity, and the phase behavior of cocontinuous PA6/ABS blends with MWNT: Correlating the aspect ratio of MWNT with the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1619-1631.	2.4	107
225	Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Polymer Engineering and Science, 2008, 48, 149-158.	1.5	93
226	Electrical, Morphological and Rheological Study of Meltâ€Mixed Polystyrene/Copper Nanowire Nanocomposites. Macromolecular Materials and Engineering, 2008, 293, 631-640.	1.7	20
227	Use of Singleâ€Walled Carbon Nanotubes as Reinforcing Fillers in UVâ€Curable Epoxy Systems. Macromolecular Materials and Engineering, 2008, 293, 708-713.	1.7	20
228	A Novel Strategy to Incorporate Carbon Nanotubes into Thermoplastic Matrices. Macromolecular Rapid Communications, 2008, 29, 244-251.	2.0	155
229	Antistatic Epoxy Coatings With Carbon Nanotubes Obtained by Cationic Photopolymerization. Macromolecular Rapid Communications, 2008, 29, 396-400.	2.0	77
230	Polymere Nanokomposite mit anorganischen Funktionsfüllstoffen. Chemie-Ingenieur-Technik, 2008, 80, 1683-1699.	0.4	15
231	Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2434-2439.	1.3	32
232	Attenuation of electromagnetic waves by carbon nanotube composites. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2425-2429.	1.3	26
233	Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 2008, 49, 1902-1909.	1.8	147
234	Structural analysis of multicomponent nanoclay-containing polymer blends through simple model systems. Polymer, 2008, 49, 2119-2126.	1.8	52

#	Article	IF	CITATIONS
235	Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sensors and Actuators B: Chemical, 2008, 134, 787-795.	4.0	99
236	Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 2008, 68, 777-789.	3.8	161
237	Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Materialia, 2008, 56, 2247-2261.	3.8	142
238	Specific Interactions and Reactive Coupling Induced Dispersion of Multiwall Carbon Nanotubes in Co continuous Polyamide6/Ionomer Blends. Macromolecular Symposia, 2008, 263, 11-20.	0.4	32
239	Properties of Segmented Block Copolymers in PEEK/PSU Blends. High Performance Polymers, 2008, 20, 601-614.	0.8	12
240	Luminescence Properties of SnO ₂ Nanoparticles Dispersed in Eu ³⁺ Doped SiO ₂ Matrix. Journal of Nanoscience and Nanotechnology, 2008, 8, 1489-1493.	0.9	14
241	Controlling the phase morphology of immiscible poly(2,6- dimethyl-1,4-phenylene) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf 50 502 To
242	Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes: influence of specific interactions. Journal of Nanoscience and Nanotechnology, 2008, 8, 1721-7.	0.9	0
243	Multiwalled Carbon Nanotubes Produced by a Continuous CVD Method and Their Use in Melt Mixed Composites with Polycarbonate. Macromolecular Symposia, 2007, 254, 392-399.	0.4	9
244	Elongational Viscosity and Foaming Behavior of PP Modified by Electron Irradiation or Nanotube Addition. Macromolecular Symposia, 2007, 254, 400-408.	0.4	26
245	Preparation and Rheological Characterization of Polymer Nanocomposites Based on Expanded Graphite. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 591-598.	1.2	50
246	Styrene maleic anhydride copolymer mediated dispersion of single wall carbon nanotubes in polyamide 12: Crystallization behavior and morphology. Journal of Applied Polymer Science, 2007, 106, 345-353.	1.3	34
247	Rheology, morphology, and crystallization behavior of meltâ€mixed blends of polyamide6 and acrylonitrileâ€butadieneâ€styrene: Influence of reactive compatibilizer premixed with multiwall carbon nanotubes. Journal of Applied Polymer Science, 2007, 106, 3394-3408.	1.3	67
248	Ductile-to-Semiductile Transition in PP-MWNT Nanocomposites. Macromolecular Rapid Communications, 2007, 28, 834-841.	2.0	35
249	Temperature Dependence of Creep Behavior of PP–MWNT Nanocomposites. Macromolecular Rapid Communications, 2007, 28, 1624-1633.	2.0	75
250	Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Composites Science and Technology, 2007, 67, 867-879.	3.8	101
251	Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 2007, 48, 1020-1029.	1.8	211
252	Electrical conductivity recovery in carbon nanotube–polymer composites after transient shear. Physica Status Solidi (B): Basic Research, 2007, 244, 4223-4226.	0.7	130

#	Article	IF	CITATIONS
253	Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheologica Acta, 2007, 46, 889-898.	1.1	51
254	Use of carbon nanotube filled polycarbonate in blends with montmorillonite filled polypropylene. Composites Science and Technology, 2007, 67, 855-860.	3.8	103
255	Mechanical Properties and Morphology of Melt-mixed PA6/SWNT Composites: Effect of Reactive Coupling. Macromolecular Symposia, 2006, 233, 161-169.	0.4	18
256	Hyperbranched Polyesters and Poly(ether amide)s - Synthesis, Modification, Melt Rheology and Application in Blends. , 2006, , 303-308.		0
257	Poly(propylene)/montmorillonite/polypyrrole composites: structure and conductivity. Polymers for Advanced Technologies, 2006, 17, 715-726.	1.6	25
258	Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Physica Status Solidi (B): Basic Research, 2006, 243, 3445-3451.	0.7	63
259	Melt Mixing of Polycarbonate with Multi-Walled Carbon Nanotubes in Miniature Mixers. Macromolecular Materials and Engineering, 2006, 291, 227-238.	1.7	110
260	Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process. Nanotechnology, 2006, 17, 963-972.	1.3	45
261	Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. Journal of Non-Newtonian Fluid Mechanics, 2005, 128, 2-6.	1.0	151
262	Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer, 2005, 46, 7346-7351.	1.8	112
263	Polyethylene multiwalled carbon nanotube composites. Polymer, 2005, 46, 8222-8232.	1.8	753
264	Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer, 2005, 46, 10355-10363.	1.8	220
265	Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal, 2005, 41, 1061-1070.	2.6	287
266	Compatibilization of polymer blends with high-molecular-weight peroxides. Journal of Applied Polymer Science, 2005, 96, 232-242.	1.3	17
267	Reactive polytetrafluoroethylene/polyamide compounds. I. Characterization of the compound morphology with respect to the functionality of the polytetrafluoroethylene component by microscopic and differential scanning calorimetry studies. Journal of Applied Polymer Science, 2005, 98. 1308-1316.	1.3	20
268	Reactive Compatibilization of Melt Mixed PA6/SWNT Composites: Mechanical Properties and Morphology. Macromolecular Chemistry and Physics, 2005, 206, 2084-2095.	1.1	72
269	Crack Toughness Behaviour of Multiwalled Carbon Nanotube (MWNT)/Polycarbonate Nanocomposites. Macromolecular Rapid Communications, 2005, 26, 1246-1252.	2.0	82
270	Crosslinkable coupling agents: Synthesis and use for modification of interfaces in polymer blends. Polymer, 2005, 46, 6563-6574.	1.8	20

#	Article	IF	CITATIONS
271	Purification and Percolation — Unexpected Phenomena in Nanotube Polymer Composites. AIP Conference Proceedings, 2005, , .	0.3	8
272	Composites of Polycarbonate with Multiwalled Carbon Nanotubes Produced by Melt Mixing. ACS Symposium Series, 2005, , 148-163.	0.5	6
273	Melt Mixing as Method to Disperse Carbon Nanotubes into Thermoplastic Polymers. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 211-224.	1.0	96
274	Investigation of the Orientation in Composite Fibers of Polycarbonate with Multiwalled Carbon Nanotubes by Raman Microscopy. Macromolecular Symposia, 2005, 230, 167-172.	0.4	33
275	Melt-Mixed Blends of Carbon Nanotube-Filled Polycarbonate with Polyethylene. ACS Symposium Series, 2005, , 164-177.	0.5	4
276	The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 2005, 39, 1007-1025.	1.2	82
277	Investigations on Polycarbonate-Nanotube Composites. AIP Conference Proceedings, 2004, , .	0.3	3
278	Binary and ternary blends of polyethylene, polypropylene, and polyamide 6,6: The effect of compatibilization on the morphology and rheology. Journal of Applied Polymer Science, 2004, 94, 1976-1985.	1.3	32
279	Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal, 2004, 40, 137-148.	2.6	262
280	Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer, 2004, 45, 8863-8870.	1.8	625
281	Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chemical Physics Letters, 2004, 392, 28-33.	1.2	75
282	Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon, 2004, 42, 965-969.	5.4	277
283	Carbon nanofibers for composite applications. Carbon, 2004, 42, 1153-1158.	5.4	468
284	Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends. Journal of Rheology, 2004, 48, 1103-1122.	1.3	33
285	Peroxide-containing compatibilizer for polypropylene blends with other polymers. Macromolecular Symposia, 2004, 210, 209-217.	0.4	3
286	Preparation of PA6/nano titanium dioxide(TiO2) composites and their spinnability. Macromolecular Symposia, 2004, 210, 251-261.	0.4	34
287	Creation of crosslinkable interphases in polymer blends. Macromolecular Symposia, 2004, 210, 165-174.	0.4	9
288	Influence of Reactive Compatibilization on the Morphology of Polypropylene/Polystyrene Blends. Macromolecular Symposia, 2004, 214, 279-288.	0.4	3

#	Article	IF	CITATIONS
289	Dispersion of Carbon Nanotubes into Thermoplastic Polymers using Melt Mixing. AIP Conference Proceedings, 2004, , .	0.3	10
290	On Blends of Polyamide 6 and a Hyperbranched Aramid. Macromolecular Materials and Engineering, 2003, 288, 318-325.	1.7	30
291	Dynamic mechanical behavior of high-density polyethylene/ethylene vinyl acetate copolymer blends: The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization. Journal of Applied Polymer Science, 2003, 87, 2083-2099.	1.3	91
292	Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer, 2003, 44, 8061-8069.	1.8	315
293	Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 2003, 44, 5023-5030.	1.8	424
294	Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2003, 43, 87-141.	2.2	356
295	Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Composite Interfaces, 2003, 10, 389-404.	1.3	198
296	Morphology of reactive PP/PS blends with hyperbranched polymers. Macromolecular Symposia, 2003, 198, 209-220.	0.4	6
297	Detection of co-continuous structures in SAN/PA6 blends by different methods. Macromolecular Symposia, 2003, 198, 69-82.	0.4	28
298	Structural effects of compatibilizer localization and effectivity in thermoplastic polyurethane-polyolefin blends. Journal of Applied Polymer Science, 2002, 83, 2901-2905.	1.3	10
299	Thermal behavior and morphology of polyamide 6 based multicomponent blends. Journal of Applied Polymer Science, 2002, 84, 2753-2759.	1.3	32
300	Reactive melt blending of modified polyamide and polypropylene: Assessment of compatibilization by fractionated crystallization and blend morphology. Journal of Applied Polymer Science, 2002, 86, 3445-3453.	1.3	24
301	Multicomponent blends based on polyamide 6 and styrenic polymers: morphology and melt rheology. Polymer, 2002, 43, 6985-6992.	1.8	107
302	Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer, 2002, 43, 3247-3255.	1.8	1,181
303	Surface tension, interfacial tension, and morphology in blends of thermoplastic polyurethanes and polyolefins. Part I. Surface tension of melts of TPU model substances and polyolefins. Polymer, 2002, 43, 6965-6972.	1.8	55
304	Hyperbranched Poly(Ether Amide)s via Nucleophilic Ring Opening Reaction of Oxazolines. High Performance Polymers, 2001, 13, S21-S31.	0.8	27
305	Radical processes for the creation of compatibilizing layers in polyolefin blends. Macromolecular Symposia, 2001, 164, 377-388.	0.4	7
306	Modification of PP by blending with PS and reactive polymers. Macromolecular Symposia, 2001, 164, 369-376.	0.4	3

#	Article	IF	CITATIONS
307	Investigation of the melting behavior and morphology development of polymer blends in the melting zone of twin-screw extruders. Journal of Applied Polymer Science, 2001, 82, 1986-2002.	1.3	26
308	Synthesis of Chromophore-Labeled PP by the Borane Approach and their Application in Probing Penetration of Oligomeric PP into PP Particles. Macromolecular Chemistry and Physics, 2001, 202, 313-318.	1.1	3
309	2-Oxazoline-Terminated Polystyrene by Atom-Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 2148-2154.	1.1	17
310	The influence of segmented block copolymers in immiscible polymer blends. Macromolecular Symposia, 2000, 149, 219-224.	0.4	7
311	Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters. Macromolecular Chemistry and Physics, 2000, 201, 49-57.	1.1	55
312	Polarized FTIR photoacoustic spectroscopy on blends of thermoplastic poly(ether-urethanes) with modified polypropylenes. Journal of Applied Polymer Science, 2000, 75, 1194-1204.	1.3	6
313	Experimental investigation of the morphology development of polyblends in corotating twin-screw extruders. Journal of Applied Polymer Science, 2000, 76, 708-721.	1.3	35
314	Blends of hyperbranched poly(ether amide)s and polyamide-6. Macromolecular Materials and Engineering, 2000, 280-281, 33-40.	1.7	40
315	Influence of interfacial reaction on morphology in modified PP/PS blends. Macromolecular Symposia, 2000, 149, 231-236.	0.4	8
316	Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters. Macromolecular Chemistry and Physics, 2000, 201, 49-57.	1.1	1
317	Coalescence in blends of thermoplastic polyurethane with polyolefins. Polymer Engineering and Science, 1999, 39, 1022-1034.	1.5	41
318	Blends of thermoplastic polyurethane and maleic-anhydride grafted polyethylene. I: Morphology and mechanical properties. Polymer Engineering and Science, 1999, 39, 1035-1048.	1.5	37
319	Blends of Amphiphilic, Hyperbranched Polyesters and Different Polyolefins. Macromolecules, 1999, 32, 6333-6339.	2.2	90
320	Determination of particle size in multiphase blends by different methods. Journal of Macromolecular Science - Physics, 1999, 38, 527-539.	0.4	9
321	Morphology, conductivity, and mechanical properties of polypyrrole-containing composites. Journal of Macromolecular Science - Physics, 1999, 38, 737-748.	0.4	15
322	Localizing compatibilizers in immiscible blends by SEM. Polymer Testing, 1998, 17, 247-255.	2.3	15
323	Influence of processing conditions on the multiphase structure of segmented polyurethane. Polymer, 1998, 39, 5147-5153.	1.8	75
324	Preparation and Properties of Conducting Polyolefins Composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 1117-1126.	1.2	11

#	Article	IF	CITATIONS
325	Rheo-optical fourier transform infrared spectroscopy of polyurethanes and their blends with polyolefins. Macromolecular Chemistry and Physics, 1997, 198, 2057-2072.	1.1	12
326	Morphology and properties of blends with different thermoplastic polyurethanes and polyolefines. Journal of Applied Polymer Science, 1997, 64, 749-762.	1.3	60
327	Chemical reactions during reactive blending of polyurethanes: Fiction or reality?. Macromolecular Symposia, 1996, 112, 151-158.	0.4	12
328	Wirkung von Diisocyanat als reaktiver Koppler in TPU/PA6-Blends. Angewandte Makromolekulare Chemie, 1993, 206, 21-38.	0.3	8
329	Stress Transfer and Fracture Mechanisms in Carbon Nanotube-Reinforced Polymer Nanocomposites. , 0, , 139-172.		0
330	Elucidating Structure Property of Polyethylene/CNT Nanocomposite by in situ SFM Deformation Tests. Journal of Nepal Chemical Society, 0, 26, 22-30.	0.7	0
331	Polymer/CNT Composites and Filaments for Smart Textiles: Melt Mixing of Composites. Solid State Phenomena, 0, 333, 91-96.	0.3	1