List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	INSTANTANEOUS, NON-SQUEEZED, NOISE-BASED LOGIC. , 2022, , 515-521.		Ο
2	NOISE-BASED LOGIC: WHY NOISE? A COMPARATIVE STUDY OF THE NECESSITY OF RANDOMNESS OUT OF ORTHOGONALITY. , 2022, , 507-513.		0
3	Do Electromagnetic Waves Exist in a Short Cable at Low Frequencies? What Does Physics Say?. , 2022, , 63-75.		0
4	On the Theory and Design of Cold Resistors. , 2022, , 461-474.		0
5	Memristor Equations: Incomplete Physics and Undefined Passivity/Activity. , 2022, , 359-366.		Ο
6	Comments on "Sub-kBT Micro-Electromechanical Irreversible Logic Gate― , 2022, , 503-506.		0
7	Noise-Based Logic Gates by Operations on the Reference System. , 2022, , 531-540.		Ο
8	More on the Reference-Grounding-Based Search in Noise-Based Logic. Fluctuation and Noise Letters, 2022, 21, .	1.5	3
9	Statistical Random Number Generator Attack Against the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange Protocol. Fluctuation and Noise Letters, 2022, 21, .	1.5	2
10	Alternating (AC) Loop Current Attacks Against the KLJN Secure Key Exchange Scheme. Fluctuation and Noise Letters, 2021, 20, .	1.5	7
11	Deterministic Random Number Generator Attack Against the Kirchhoff-Law-Johnson-Noise Secure Key Exchange Protocol. Fluctuation and Noise Letters, 2021, 20, 2150046.	1.5	7
12	Perspective—On the thermodynamics of perfect unconditional security. Applied Physics Letters, 2021, 119, .	3.3	7
13	Comments on the "Generalized―KJLN Key Exchanger with Arbitrary Resistors: Power, Impedance, Security. Fluctuation and Noise Letters, 2021, 20, 2130002.	1.5	11
14	Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique. Applied Sciences (Switzerland), 2020, 10, 5818.	2.5	9
15	Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing. Biosensors, 2020, 10, 93.	4.7	2
16	Fluctuation-Enhanced Sensing. Journal of Sensors, 2020, 2020, 1-2.	1.1	0
17	Entanglement, and Unsorted Database Search in Noise-Based Logic. Applied Sciences (Switzerland), 2019, 9, 3029.	2.5	4
18	A Static-loop-current Attack Against the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange System. Applied Sciences (Switzerland), 2019, 9, 666.	2.5	15

#	Article	IF	CITATIONS
19	Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function. Fluctuation and Noise Letters, 2017, 16, 1750002.	1.5	18
20	Random-Resistor-Random-Temperature Kirchhoff-Law-Johnson-Noise (RRRT-KLJN) Key Exchange. Metrology and Measurement Systems, 2016, 23, 3-11.	1.4	21
21	Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange. Fluctuation and Noise Letters, 2016, 15, 1650008.	1.5	13
22	Current Injection Attack against the KLJN Secure Key Exchange. Metrology and Measurement Systems, 2016, 23, 173-181.	1.4	17
23	Comments on "A New Transient Attack on the Kish Key Distribution System― Metrology and Measurement Systems, 2016, 23, 321-331.	1.4	12
24	Cable Capacitance Attack against the KLJN Secure Key Exchange. Information (Switzerland), 2015, 6, 719-732.	2.9	17
25	Resistance noise at the metal–insulator transition in thermochromic VO2 films. Journal of Applied Physics, 2015, 117, .	2.5	13
26	Unconditional security for the smart power grids and star networks. , 2015, , .		4
27	Lognormal distribution of firing time and rate from a single neuron?. Cognitive Neurodynamics, 2015, 9, 459-462.	4.0	9
28	Resource Requirements and Speed versus Geometry of Unconditionally Secure Physical Key Exchanges. Entropy, 2015, 17, 2010-2024.	2.2	16
29	Analysis of an Attenuator Artifact in an Experimental Attack by Gunn–Allison–Abbott Against the Kirchhoff-Law–Johnson-Noise (KLJN) Secure Key Exchange System. Fluctuation and Noise Letters, 2015, 14, 1550011.	1.5	23
30	Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions. Fluctuation and Noise Letters, 2015, 14, 1550007.	1.5	14
31	Elimination of a Second-Law-Attack, and All Cable-Resistance-Based Attacks, in the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange System. Entropy, 2014, 16, 5223-5231.	2.2	27
32	Do Electromagnetic Waves Exist in a Short Cable at Low Frequencies? What Does Physics Say?. Fluctuation and Noise Letters, 2014, 13, 1450016.	1.5	29
33	On the security of the Kirchhoff-law–Johnson-noise (KLJN) communicator. Quantum Information Processing, 2014, 13, 2213-2219.	2.2	94
34	Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law–Johnson-noise secure key exchange. Journal of Computational Electronics, 2014, 13, 271-277.	2.5	24
35	On the "Cracking―Scheme in the Paper "A Directional Coupler Attack Against the Kish Key Distribution System―by Gunn, Allison and Abbott. Metrology and Measurement Systems, 2014, 21, 389-400. 	1.4	26
36	Bit errors in the Kirchhoff-Law–Johnson-Noise secure key exchange. International Journal of Modern Physics Conference Series, 2014, 33, 1460367.	0.7	14

#	Article	IF	CITATIONS
37	Bird's-eye view on noise-based logic. International Journal of Modern Physics Conference Series, 2014, 33, 1460363.	0.7	5
38	Does information have mass? [Point of View]. Proceedings of the IEEE, 2013, 101, 1895-1899.	21.3	10
39	Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sensors and Actuators B: Chemical, 2013, 188, 651-660.	7.8	39
40	Twisted waves: Concept and limitations. , 2013, , .		2
41	PHYSICAL UNCLONABLE FUNCTION HARDWARE KEYS UTILIZING KIRCHHOFF-LAW-JOHNSON-NOISE SECURE KEY EXCHANGE AND NOISE-BASED LOGIC. Fluctuation and Noise Letters, 2013, 12, 1350018.	1.5	26
42	Twisted Radio Waves and Twisted Thermodynamics. PLoS ONE, 2013, 8, e56086.	2.5	13
43	Errors and Their Mitigation at the Kirchhoff-Law-Johnson-Noise Secure Key Exchange. PLoS ONE, 2013, 8, e81103.	2.5	25
44	Critical Analysis of the Bennett–Riedel Attack on Secure Cryptographic Key Distributions via the Kirchhoff-Law–Johnson-Noise Scheme. PLoS ONE, 2013, 8, e81810.	2.5	36
45	Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters. PLoS ONE, 2013, 8, e70206.	2.5	30
46	Stochastic processes in light-assisted nanoparticle formation. Applied Physics Letters, 2012, 100, 193106.	3.3	8
47	Optimum drift velocity for single molecule fluorescence bursts in micro/nano-fluidic channels. Applied Physics Letters, 2012, 101, 043120.	3.3	0
48	Information Networks Secured by the Laws of Physics. IEICE Transactions on Communications, 2012, E95.B, 1501-1507.	0.7	22
49	Noise-based information processing. , 2011, , .		0
50	Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification. IEEE Nanotechnology Magazine, 2011, 10, 1238-1242.	2.0	12
51	Log-normal distribution of single molecule fluorescence bursts in micro/nano-fluidic channels. Applied Physics Letters, 2011, 99, 143121.	3.3	9
52	Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2140-2142.	2.1	95
53	Binary Fingerprints at Fluctuation-Enhanced Sensing. Sensors, 2010, 10, 361-373.	3.8	15
54	Fluctuation-enhanced sensing of bacterium odors. Sensors and Actuators B: Chemical, 2009, 142, 429-434.	7.8	17

#	Article	IF	CITATIONS
55	Notes on recent approaches concerning the Kirchhoff-law–Johnson-noise-based secure key exchange. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2858-2868.	2.1	96
56	Johnson(-like)–Noise–Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 978-984.	2.1	131
57	Noise Spectroscopy of Gas Sensors. IEEE Sensors Journal, 2008, 8, 786-790.	4.7	32
58	Advanced Agent Identification With Fluctuation-Enhanced Sensing. IEEE Sensors Journal, 2008, 8, 706-713.	4.7	42
59	UNCONDITIONALLY SECURE COMPUTERS, ALGORITHMS AND HARDWARE, SUCH AS MEMORIES, PROCESSORS, KEYBOARDS, FLASH AND HARD DRIVES. Fluctuation and Noise Letters, 2008, 08, L95-L98.	1.5	33
60	Fluctuation-Enhanced Sensing: Status and Perspectives. IEEE Sensors Journal, 2008, 8, 714-719.	4.7	23
61	Design and Implementation of a Cost Effective System for Module Test Automation. , 2007, , .		0
62	Totally secure classical communication utilizing Johnson (-like) noise and Kirchoff's law. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 178-182.	2.1	165
63	TOTALLY SECURE CLASSICAL NETWORKS WITH MULTIPOINT TELECLONING (TELEPORTATION) OF CLASSICAL BITS THROUGH LOOPS WITH JOHNSON-LIKE NOISE. Fluctuation and Noise Letters, 2006, 06, C9-C21.	1.5	40
64	Gas sensing by thermoelectric voltage fluctuations in SnO nanoparticle films. Sensors and Actuators B: Chemical, 2005, 106, 708-712.	7.8	33
65	Surface diffusion enhanced chemical sensing by surface acoustic waves. Sensors and Actuators B: Chemical, 2003, 93, 159-163.	7.8	31
66	FLUCTUATION-ENHANCED GAS SENSING BY SURFACE ACOUSTIC WAVE DEVICES. Fluctuation and Noise Letters, 2002, 02, L117-L123.	1.5	35
67	ON THE STATISTICAL ANALYSIS OF NOISE IN CHEMICAL SENSORS AND ITS APPLICATION FOR SENSING. Fluctuation and Noise Letters, 2001, 01, L147-L153.	1.5	39
68	Nonlinearity Attack Against the Kichhoff–Law–Johnson-Noise (KLJN) Secure Key Exchange Protocol. Fluctuation and Noise Letters, 0, , .	1.5	0
69	From Cold Resistor to Secure Key Exchanger. Fluctuation and Noise Letters, 0, , .	1.5	0