
Ivana Novak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662830/publications.pdf Version: 2024-02-01

Ινανία Νουάκ

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	A Role for Ubiquitin in Selective Autophagy. Molecular Cell, 2009, 34, 259-269.	9.7	1,098
3	Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports, 2010, 11, 45-51.	4.5	1,045
4	Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis. Journal of Biological Chemistry, 2013, 288, 1099-1113.	3.4	374
5	Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Scientific Reports, 2017, 7, 1131.	3.3	203
6	Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. Journal of Cell Science, 2005, 118, 2755-2762.	2.0	190
7	Mitophagy: A Complex Mechanism of Mitochondrial Removal. Antioxidants and Redox Signaling, 2012, 17, 794-802.	5.4	188
8	Visualization of ATP Release in Pancreatic Acini in Response to Cholinergic Stimulus. Journal of Biological Chemistry, 2001, 276, 32925-32932.	3.4	167
9	Rab GTPase-Activating Proteins in Autophagy: Regulation of Endocytic and Autophagy Pathways by Direct Binding to Human ATG8 Modifiers. Molecular and Cellular Biology, 2012, 32, 1733-1744.	2.3	161
10	Autophagy Modulation in Cancer: Current Knowledge on Action and Therapy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-18.	4.0	154
11	Update of P2Y receptor pharmacology: IUPHAR Review 27. British Journal of Pharmacology, 2020, 177, 2413-2433.	5.4	151
12	Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Pflugers Archiv European Journal of Physiology, 1988, 411, 546-553.	2.8	150
13	Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. Journal of Cell Science, 2006, 119, 4025-4032.	2.0	144
14	Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 207-218.	2.6	140
15	Cohesin Smc1β determines meiotic chromatin axis loop organization. Journal of Cell Biology, 2008, 180, 83-90.	5.2	123
16	The Cystic Fibrosis of Exocrine Pancreas. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a009746-a009746.	6.2	118
17	Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy, 2021, 17, 1232-1243.	9.1	117
18	Mouse Embryonic Stem Cells Form Follicle-Like Ovarian Structures but Do Not Progress Through Meiosis. Stem Cells, 2006, 24, 1931-1936.	3.2	116

Ινάνα Νονάκ

#	Article	IF	CITATIONS
19	Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. Pflugers Archiv European Journal of Physiology, 1988, 411, 58-68.	2.8	104
20	Purinergic signalling and diabetes. Purinergic Signalling, 2013, 9, 307-324.	2.2	103
21	ATP as a Signaling Molecule: the Exocrine Focus. Physiology, 2003, 18, 12-17.	3.1	102
22	The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Molecular Cancer, 2015, 14, 203.	19.2	96
23	ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Archiv European Journal of Physiology, 2015, 467, 1495-1508.	2.8	93
24	Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signalling, 2008, 4, 237-253.	2.2	92
25	SYCP2 and SYCP3 are required for cohesin core integrity at diplotene but not for centromere cohesion at the first meiotic division. Journal of Cell Science, 2005, 118, 2271-2278.	2.0	89
26	The anionic basis of fluid secretion by the rabbit mandibular salivary gland Journal of Physiology, 1984, 349, 619-630.	2.9	87
27	P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx. Biochemical Journal, 2003, 374, 51-61.	3.7	85
28	Cohesin SMC1β protects telomeres in meiocytes. Journal of Cell Biology, 2009, 187, 185-199.	5.2	81
29	Cell volume regulation in epithelial physiology and cancer. Frontiers in Physiology, 2013, 4, 233.	2.8	81
30	Purinoceptors Evoke Different Electrophysiological Responses in Pancreatic Ducts. Journal of Biological Chemistry, 1999, 274, 31784-31791.	3.4	76
31	Two independent anion transport systems in rabbit mandibular salivary glands. Pflugers Archiv European Journal of Physiology, 1986, 407, 649-656.	2.8	75
32	Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines. Journal of Physiology, 1980, 300, 467-487.	2.9	74
33	Purinergic Receptors in Adipose Tissue As Potential Targets in Metabolic Disorders. Frontiers in Pharmacology, 2017, 8, 878.	3.5	72
34	Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Developmental Dynamics, 2008, 237, 2039-2052.	1.8	69
35	Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. International Journal of Cancer, 2016, 139, 2540-2552.	5.1	68
36	Purinergic signalling in the pancreas in health and disease. Journal of Endocrinology, 2012, 213, 123-141.	2.6	67

Ινάνα Νονάκ

#	Article	IF	CITATIONS
37	Monocarboxylate Transporters MCT1 and MCT4 Regulate Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells. Pancreas, 2016, 45, 1036-1047.	1.1	66
38	Autophagy receptors in developmental clearance of mitochondria. Autophagy, 2011, 7, 301-303.	9.1	64
39	Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiologica, 2011, 202, 501-522.	3.8	62
40	Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation. Cancer Research, 2017, 77, 4389-4401.	0.9	61
41	Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology, 2008, 69, 333-339.	2.1	57
42	The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells. PLoS ONE, 2012, 7, e51164.	2.5	55
43	Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. BioEssays, 2017, 39, 1600253.	2.5	53
44	Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts. Pflugers Archiv European Journal of Physiology, 1991, 419, 76-83.	2.8	50
45	ATP storage and uptake by isolated pancreatic zymogen granules. Biochemical Journal, 2010, 429, 303-311.	3.7	50
46	Pancreatic Bicarbonate Secretion Involves Two Proton Pumps. Journal of Biological Chemistry, 2011, 286, 280-289.	3.4	50
47	Purinergic regulation of CFTR and Ca ²⁺ -activated Cl ^{â^'} channels and K ⁺ channels in human pancreatic duct epithelium. American Journal of Physiology - Cell Physiology, 2013, 304, C673-C684.	4.6	50
48	Ion channels in control of pancreatic stellate cell migration. Oncotarget, 2017, 8, 769-784.	1.8	48
49	Effect of P2X7receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. Journal of Physiology, 2010, 588, 3615-3627.	2.9	47
50	ATP-consuming and ATP-generating Enzymes Secreted by Pancreas. Journal of Biological Chemistry, 2006, 281, 29441-29447.	3.4	46
51	Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases. PLoS ONE, 2015, 10, e0126432.	2.5	44
52	KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. Pflugers Archiv European Journal of Physiology, 2016, 468, 1865-1875.	2.8	44
53	Effect of ATP, carbachol and other agonists on intracellular calcium activity and membrane voltage of pancreatic ducts. Pflugers Archiv European Journal of Physiology, 1994, 426, 412-418.	2.8	40
54	Identification of KCa3.1 Channel as a Novel Regulator of Oxidative Phosphorylation in a Subset of Pancreatic Carcinoma Cell Lines. PLoS ONE, 2016, 11, e0160658.	2.5	40

#	Article	IF	CITATIONS
55	Different purinergic receptors lead to intracellular calcium increases in pancreatic ducts. Pflugers Archiv European Journal of Physiology, 1998, 436, 33-39.	2.8	39
56	Acid-base transport in pancreatic cancer: Molecular mechanisms and clinical potential. Biochemistry and Cell Biology, 2014, 92, 449-459.	2.0	38
57	An intermediate-conductance Ca ²⁺ -activated K ⁺ channel is important for secretion in pancreatic duct cells. American Journal of Physiology - Cell Physiology, 2012, 303, C151-C159.	4.6	37
58	Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction. Cellular Signalling, 2015, 27, 2401-2409.	3.6	37
59	Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment. FEBS Journal, 2004, 271, 4366-4374.	0.2	36
60	Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels, 2013, 7, 432-441.	2.8	36
61	Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line. Journal of Membrane Biology, 2016, 249, 569-576.	2.1	36
62	The role of buffer anions and protons in secretion by the rabbit mandibular salivary gland Journal of Physiology, 1982, 322, 273-286.	2.9	35
63	Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Current Opinion in Pharmacology, 2019, 47, 75-81.	3.5	35
64	Rat pancreas secretes particulate ecto-nucleotidase CD39. Journal of Physiology, 2003, 551, 881-892.	2.9	34
65	Role of vesicular nucleotide transporter VNUT (SLC17A9) in release of ATP from AR42J cells and mouse pancreatic acinar cells. Purinergic Signalling, 2014, 10, 431-440.	2.2	32
66	pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1994-2003.	3.8	32
67	P2Y2 and P2Y4 receptors regulate pancreatic Ca2+-activated K+ channels differently. Pflugers Archiv European Journal of Physiology, 2005, 450, 429-436.	2.8	31
68	Purinergic Receptors and Calcium Signalling in Human Pancreatic Duct Cell Lines. Cellular Physiology and Biochemistry, 2008, 22, 157-168.	1.6	31
69	P2X receptor-ion channels in the inflammatory response in adipose tissue and pancreas — potential triggers in onset of type 2 diabetes?. Current Opinion in Immunology, 2018, 52, 1-7.	5.5	30
70	Pannexinâ€∃ mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiologica, 2020, 228, e13360.	3.8	30
71	Purinergic Receptors Have Different Effects in Rat Exocrine Pancreas. Calcium Signals Monitored by Fura-2 Using Confocal Microscopy. Cellular Physiology and Biochemistry, 2002, 12, 83-92.	1.6	29
72	Acid-base transport in pancreas—new challenges. Frontiers in Physiology, 2013, 4, 380.	2.8	29

#	Article	IF	CITATIONS
73	Deconstructing the principles of ductal network formation in the pancreas. PLoS Biology, 2018, 16, e2002842.	5.6	29
74	Effect of secretin and inhibitors of HCO3 ?/H+ transport on the membrane voltage of rat pancreatic duct cells. Pflugers Archiv European Journal of Physiology, 1993, 425, 272-279.	2.8	28
75	Effect of ATP on Intracellular pH in Pancreatic Ducts Involves P2X ₇ Receptors. Cellular Physiology and Biochemistry, 2003, 13, 93-102.	1.6	28
76	Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport. Pflugers Archiv European Journal of Physiology, 2008, 456, 437-447.	2.8	27
77	UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes. Purinergic Signalling, 2014, 10, 337-347.	2.2	27
78	ATP release, generation and hydrolysis in exocrine pancreatic duct cells. Purinergic Signalling, 2015, 11, 533-550.	2.2	27
79	Effect of vasoactive intestinal peptide, carbachol and other agonists on the membrane voltage of pancreatic duct cells. Pflugers Archiv European Journal of Physiology, 1993, 424, 315-320.	2.8	23
80	Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Communication and Signaling, 2015, 13, 28.	6.5	23
81	A brief overview of BNIP3L/NIX receptorâ€mediated mitophagy. FEBS Open Bio, 2021, 11, 3230-3236.	2.3	23
82	Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H+, K+-ATPases in Pancreatic Cancer and Stellate Cells. Cancers, 2020, 12, 640.	3.7	22
83	Cation transport by sweat ducts in primary culture. Ionic mechanism of cholinergically evoked current oscillations Journal of Physiology, 1990, 424, 109-131.	2.9	21
84	Secretin stimulates \$\${m HCO}_{m 3}^{m - } \$\$ and acetate efflux but not Na + / \$\${m HCO}_{m 3}^{m - } \$\$ uptake in rat pancreatic ducts. Pflugers Archiv European Journal of Physiology, 2001, 441, 761-771.	2.8	21
85	Calcium influx pathways in rat pancreatic ducts. Pflugers Archiv European Journal of Physiology, 1996, 432, 278-285.	2.8	20
86	The P2X7 receptor and pannexin-1 are involved in glucose-induced autocrine regulation in β-cells. Scientific Reports, 2018, 8, 8926.	3.3	19
87	ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152, 351-356.	1.8	17
88	β-adrenergic regulation of ion transport in pancreatic ducts: Patch-clamp study of isolated rat pancreatic ducts. Gastroenterology, 1998, 115, 714-721.	1.3	16
89	Where have all the Na+ channels gone? In search of functional ENaC in exocrine pancreas. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 162-168.	2.6	16
90	The P2X7 Receptor Stimulates IL-6 Release from Pancreatic Stellate Cells and Tocilizumab Prevents Activation of STAT3 in Pancreatic Cancer Cells. Cells, 2021, 10, 1928.	4.1	15

#	Article	IF	CITATIONS
91	TRANSPORT OF BICARBONATE AND OTHER ANIONS IN SALIVARY SECRETION. Annals of the New York Academy of Sciences, 1980, 341, 172-190.	3.8	14
92	Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors. Pancreas, 2013, 42, 452-460.	1.1	14
93	In silico analysis of the transportome in human pancreatic ductal adenocarcinoma. European Biophysics Journal, 2016, 45, 749-763.	2.2	14
94	The Vacuolar H+ ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells, 2020, 9, 465.	4.1	14
95	Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes: On the Possible Roles of Caveolae, Insulin Receptors, FAK and ERK1/2. Cellular Physiology and Biochemistry, 2011, 28, 1231-1246.	1.6	13
96	The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 1171-1181.	2.8	13
97	Regulation of the Na+/Ca2+ Exchanger in Rat Pancreatic Ducts. Journal of Membrane Biology, 2002, 186, 43-53.	2.1	12
98	Purinergic Signaling in Pancreas—From Physiology to Therapeutic Strategies in Pancreatic Cancer. International Journal of Molecular Sciences, 2020, 21, 8781.	4.1	12
99	A New Preparation of Pancreatic Ducts for Patch-Clamp Studies. Cellular Physiology and Biochemistry, 1995, 5, 344-352.	1.6	11
100	Physiological and molecular mechanisms of inorganic phosphate handling in the toad Bufo bufo. Pflugers Archiv European Journal of Physiology, 2007, 454, 101-113.	2.8	11
101	AATF and SMARCA2 are associated with thyroid volume in Hashimoto's thyroiditis patients. Scientific Reports, 2020, 10, 1754.	3.3	11
102	PERSPECTIVES. Journal of Physiology, 2000, 528, 235-235.	2.9	10
103	Purinergic Receptors Stimulate Na ⁺ /Ca ²⁺ Exchange in Pancreatic Duct Cells: Possible Role of Proteins Handling and Transporting Ca ²⁺ . Cellular Physiology and Biochemistry, 2009, 23, 387-396.	1.6	10
104	Flow Cytometer Monitoring of Bnip3- and Bnip3L/Nix-Dependent Mitophagy. Methods in Molecular Biology, 2017, 1759, 105-110.	0.9	9
105	K+ transport in the mesonephric collecting duct system of the toadBufo bufo. Journal of Experimental Biology, 2002, 205, 897-904.	1.7	9
106	Choline evokes fluid secretion by perfused rat mandibular gland without desensitization. American Journal of Physiology - Renal Physiology, 1986, 251, G84-G89.	3.4	8
107	Evidence for a Na+â^'Ca2+exchanger in rat pancreatic ducts. FEBS Letters, 1996, 397, 298-302.	2.8	8
108	ATP release and effects in pancreas. Drug Development Research, 2003, 59, 128-135.	2.9	8

#	Article	IF	CITATIONS
109	Purinergic signalling – a possible mechanism for <scp>KCNQ</scp> 1 channel response to cell volume challenges. Acta Physiologica, 2013, 207, 503-515.	3.8	8
110	Fundamentals of Bicarbonate Secretion in Epithelia. , 2016, , 187-263.		8
111	Chloride and potassium conductances of cultured human sweat ducts. Pflugers Archiv European Journal of Physiology, 1992, 422, 151-158.	2.8	7
112	Intracellular pH in Rat Pancreatic Ducts. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 409-411.	0.6	7
113	K(+) transport in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules. Journal of Experimental Biology, 2002, 205, 897-904.	1.7	7
114	Secretion of saliva by the rabbit mandibular gland in vitro : the role of anions. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1981, 296, 179-192.	2.3	6
115	Acetate stimulates secretion in the rabbit mandibular gland. Pflugers Archiv European Journal of Physiology, 1989, 414, 68-72.	2.8	6
116	Ion transport mechanisms in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 585-595.	1.8	6
117	Elevated ammonium levels: differential acute effects on three glutamate transporter isoforms. American Journal of Physiology - Cell Physiology, 2012, 302, C880-C891.	4.6	6
118	Carpal Tunnel Syndrome Is Associated With High Fibrinogen and Fibrinogen Deposits. Neurosurgery, 2014, 75, 276-285.	1.1	3
119	UTP and mechanical stimulation induce ATP release from osteocytes Bone, 2012, 50, S95.	2.9	2
120	ATP regulation of epithelial Cl- channels - new challenges?. Journal of Physiology, 2003, 547, 1-1.	2.9	2
121	Nucleotide and mechanically induced ATP release pathways in osteocytes. Bone Abstracts, 0, , .	0.0	2
122	Opposing roles of the entero-pancreatic hormone urocortin-3 in glucose metabolism in rats. Diabetologia, 2022, 65, 1018-1031.	6.3	2
123	[1] Salivary secretion: Studies on intact glands in Vivo and in Vitro. Methods in Enzymology, 1990, 192, 3-15.	1.0	1
124	pH Regulatory Transporters in Pancreatic Ductal Adenocarcinoma (PDAC). FASEB Journal, 2013, 27, 730.10.	0.5	1
125	Role of H + /K + â€ATPase and Na + /Ca 2+ exchangers in pancreatic ductal adenocarcinoma cells. FASEB Journal, 2013, 27, 953.1.	0.5	1
126	SECRETORY PROCESSES IN THE PERFLISED RABBIT MANDIBULAR GLAND 1981 35-46		1

#	Article	IF	CITATIONS
127	Cellular Mechanisms of Salivary Gland Secretion. Advances in Comparative and Environmental Physiology, 1993, , 1-43.	0.5	1
128	Fundamentals of Bicarbonate Secretion in Epithelia. Physiology in Health and Disease, 2020, , 461-541.	0.3	1
129	Bicarbonate transport in rat pancreatic ducts. Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 90, 834.	0.6	0
130	ATP release in pancreatic acini and effects on the P2X7 receptor in pancreatic stellate cells. Pancreatology, 2013, 13, S92.	1.1	0
131	WS15.4 Purinergic signalling regulates pancreatic epithelial transport and pancreatic stellate cells. Journal of Cystic Fibrosis, 2013, 12, S30.	0.7	0
132	Expression of calcium binding and transporting proteins in human pancreatic duct cell lines and rat pancreas. FASEB Journal, 2007, 21, A1336.	0.5	0
133	Adenosine receptors in pancreatic ducts. FASEB Journal, 2007, 21, A547.	0.5	0
134	The report on the 11th International Symposium on Exocrine Secretion. Journal of Medical Investigation, 2009, 56, 171-178.	0.5	0
135	Extracellular purinergic signaling in pancreas. Journal of Medical Investigation, 2009, 56, 355-356.	0.5	0
136	Characterization of ATP uptake into isolated pancreatic zymogen granules. FASEB Journal, 2009, 23, .	0.5	0
137	Purinergic receptors stimulate Calcium transport in pancreatic duct cells. FASEB Journal, 2009, 23, 796.18.	0.5	0
138	Clâ^' and K+ channels in human pancreatic ductal adenocarcinoma (PDAC) cells. FASEB Journal, 2013, 27,	0.5	0
139	ATP regulates Cl â [~] and K + channels in human pancreatic ducts. FASEB Journal, 2013, 27, 913.18.	0.5	0
140	ATP release from exocrine pancreatic cells. FASEB Journal, 2013, 27, 729.12.	0.5	0
141	Bile Acid and ATP Signaling in Exocrine Pancreatic Cells. FASEB Journal, 2015, 29, 973.2.	0.5	Ο