
AntÃ³nio A Freitas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiota stimulation generates LCMV-specific memory CD8+ T cells in SPF mice and determines their TCR repertoire during LCMV infection. Molecular Immunology, 2020, 124, 125-141.	2.2	4
2	Maria de Sousa, (1939â€⊋020). European Journal of Immunology, 2020, 50, 768-769.	2.9	1
3	The S(c)ensory Immune System Theory. Trends in Immunology, 2017, 38, 777-788.	6.8	21
4	IL-15-dependent balance between Foxp3 and RORÎ ³ t expression impacts inflammatory bowel disease. Nature Communications, 2016, 7, 10888.	12.8	65
5	Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses. Cell Reports, 2016, 16, 2777-2791.	6.4	84
6	Regulation and Maintenance of an Adoptive T-Cell Dependent Memory B Cell Pool. PLoS ONE, 2016, 11, e0167003.	2.5	2
7	Human Hematopoietic Reconstitution and HLA-Restricted Responses in Nonpermissive Alymphoid Mice. Journal of Immunology, 2014, 193, 1504-1511.	0.8	10
8	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	8.5	57
9	A mathematical perspective on CD4+ T cell quorum-sensing. Journal of Theoretical Biology, 2014, 347, 160-175.	1.7	7
10	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Cell Biology, 2014, 207, 2072OIA191.	5.2	0
11	Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 959-965.	14.5	209
12	Origin, trafficking, and intraepithelial fate of gut-tropic T cells. Journal of Experimental Medicine, 2013, 210, 1839-1854.	8.5	62
13	IL-2 coordinates IL-2–producing and regulatory T cell interplay. Journal of Experimental Medicine, 2013, 210, 2707-2720.	8.5	85
14	Quorum Sensing Contributes to Activated IgM-Secreting B Cell Homeostasis. Journal of Immunology, 2013, 190, 106-114.	0.8	25
15	Quorum-Sensing in CD4+ T Cell Homeostasis: A Hypothesis and a Model. Frontiers in Immunology, 2012, 3, 125.	4.8	95
16	Humanized mice: Current states and perspectives. Immunology Letters, 2012, 146, 1-7.	2.5	52
17	Cell-to-Cell Interactions and Signals Involved in the Reconstitution of Peripheral CD8+ TCM and TEM Cell Pools. PLoS ONE, 2011, 6, e17423.	2.5	8
18	CpG Inhibits Pro-B Cell Expansion through a Cathepsin B-Dependent Mechanism. Journal of Immunology, 2010, 184, 5678-5685.	0.8	16

AntÃ³nio A Freitas

#	Article	IF	CITATIONS
19	Endogenous TCR Recombination in TCR Tg Single RAG-Deficient Mice Uncovered by Robust In Vivo T Cell Activation and Selection. PLoS ONE, 2010, 5, e10238.	2.5	10
20	The Role of TCR Specificity and Clonal Competition During Reconstruction of the Peripheral T Cell Pool. Journal of Immunology, 2009, 182, 5232-5239.	0.8	15
21	Homeostasis of naive T cells: the Foxo that fixes. Nature Immunology, 2009, 10, 133-134.	14.5	9
22	Wild-derived mouse strains, a valuable model to study B cell responses. Molecular Immunology, 2009, 46, 601-612.	2.2	5
23	TLR-Activated B Cells Suppress T Cell-Mediated Autoimmunity. Journal of Immunology, 2008, 180, 4763-4773.	0.8	397
24	Peritoneal B-Cell Subsets in the Genus Mus: Their Role in Innate Immunity. Critical Reviews in Immunology, 2008, 28, 341-361.	0.5	1
25	Agonist-Driven Development of CD4+CD25+Foxp3+ Regulatory T Cells Requires a Second Signal Mediated by Stat6. Journal of Immunology, 2007, 178, 7550-7556.	0.8	27
26	The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. Journal of Experimental Medicine, 2006, 203, 1643-1649.	8.5	42
27	Notch signaling: Distinct ligands induce specific signals during lymphocyte development and maturation. Immunology Letters, 2006, 102, 1-9.	2.5	49
28	Competition controls the rate of transition between the peripheral pools of CD4+CD25- and CD4+CD25+ T cells. International Immunology, 2006, 18, 1607-1613.	4.0	19
29	Indexation as a Novel Mechanism of Lymphocyte Homeostasis: The Number of CD4+CD25+ Regulatory T Cells Is Indexed to the Number of IL-2-Producing Cells. Journal of Immunology, 2006, 177, 192-200.	0.8	120
30	Different Competitive Capacities of Stat4- and Stat6-Deficient CD4+ T Cells during Lymphophenia-Driven Proliferation. Journal of Immunology, 2005, 174, 1178-1187.	0.8	10
31	In Vivo and in Absence of a Thymus, the Enforced Expression of the Notch Ligands Delta-1 or Delta-4 Promotes T Cell Development with Specific Unique Effects. Journal of Immunology, 2005, 174, 2730-2737.	0.8	40
32	CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens. Journal of Immunology, 2005, 175, 7388-7397.	0.8	19
33	CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. Journal of Experimental Medicine, 2005, 202, 1075-1085.	8.5	806
34	IPEX and FOXP3: Clinical and research perspectives. Journal of Autoimmunity, 2005, 25, 56-62.	6.5	145
35	Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Seminars in Immunology, 2005, 17, 239-249.	5.6	90
36	B-cell homeostasis, competition, resources, and positive selection by self-antigens. Immunological Reviews, 2004, 197, 102-115.	6.0	60

ANTÃ³NIO A FREITAS

#	Article	IF	CITATIONS
37	Positive Selection of B Cells Expressing Low Densities of Self-reactive BCRs. Journal of Experimental Medicine, 2004, 199, 843-853.	8.5	42
38	Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood, 2004, 104, 1808-1815.	1.4	116
39	Homeostasis of Peripheral CD4+ T Cells: IL-2Rα and IL-2 Shape a Population of Regulatory Cells That Controls CD4+ T Cell Numbers. Journal of Immunology, 2002, 169, 4850-4860.	0.8	461
40	Introduction: regulation of lymphocyte homeostasis. Microbes and Infection, 2002, 4, 529-530.	1.9	8
41	T Cell Homeostasis. Journal of Experimental Medicine, 2001, 194, 591-600.	8.5	136
42	Resource Competition Determines Selection of B Cell Repertoires. Journal of Theoretical Biology, 2001, 212, 333-343.	1.7	28
43	Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia in old mice. European Journal of Immunology, 2001, 31, 500-505.	2.9	49
44	CD8+ T Lymphocytes in Double αβ TCR Transgenic Mice. I. TCR Expression and Thymus Selection in the Absence or in the Presence of Self-Antigen. Journal of Immunology, 2001, 167, 6150-6157.	0.8	9
45	CD8+ T Lymphocytes in Double αβ TCR Transgenic Mice. II. Competitive Fitness of Dual αβ TCR CD8+ T Lymphocytes in the Peripheral Pools. Journal of Immunology, 2001, 167, 6158-6164.	0.8	6
46	Population Biology of Lymphocytes: The Flight for Survival. Annual Review of Immunology, 2000, 18, 83-111.	21.8	392
47	Considerations on B Cell Homeostasis. Current Topics in Microbiology and Immunology, 2000, , 67-75.	1.1	4
48	Transfer of Small Resting B Cells into Immunodeficient Hosts Results in the Selection of a Self-renewing Activated B Cell Population. Journal of Experimental Medicine, 1999, 189, 319-330.	8.5	101
49	Peripheral T cell survival. Current Opinion in Immunology, 1999, 11, 152-156.	5.5	103
50	The role of the B cell receptor V region in peripheral B cell survival. European Journal of Immunology, 1998, 28, 2685-2693.	2.9	47
51	The role of the B cell receptor V region in peripheral B cell survival. European Journal of Immunology, 1998, 28, 2685-2693.	2.9	7
52	Differential Requirements for Survival and Proliferation of CD8 Naïve or Memory T Cells. Science, 1997, 276, 2057-2062.	12.6	770
53	Lymphocyte Survival: A Red Queen Hypothesis. Science, 1997, 277, 1950-1950.	12.6	23
54	Lymphocyte homeostasis. Seminars in Immunology, 1997, 9, 331-337.	5.6	133

ANTÃ³NIO A FREITAS

#	Article	IF	CITATIONS
55	Independent homeostatic regulation of B cell compartments. European Journal of Immunology, 1997, 27, 1801-1807.	2.9	75
56	Cellular competition modulates survival and selection of CD8+ T cells. European Journal of Immunology, 1996, 26, 2640-2649.	2.9	57
57	The role of cellular competition in B cell survival and selection of B cell repertoires. European Journal of Immunology, 1995, 25, 1729-1738.	2.9	67
58	Regulation of VH-gene expression is a lineage-specific developmental marker. European Journal of Immunology, 1994, 24, 1353-1358.	2.9	5
59	Positive and Negative Selection of Antibody Repertoires during B-Cell Differentiation. Immunological Reviews, 1994, 137, 53-89.	6.0	39
60	Lymphocyte lifespans: homeostasis, selection and competition. Trends in Immunology, 1993, 14, 25-29.	7.5	215
61	Analysis of VHGene Utilisation in the Non-Obese Diabetic Mouse. Autoimmunity, 1993, 15, 11-18.	2.6	17
62	V region dependent selection of persistent resting peripheral B cells in normal mice. International Immunology, 1993, 5, 599-605.	4.0	23
63	On the origin of natural IgM in immunoglobulin transgenic mice. International Immunology, 1992, 4, 1153-1160.	4.0	12
64	Expression and Selection of Murine Antibody Repertoires. International Reviews of Immunology, 1992, 8, 173-187.	3.3	27
65	Normal serum immunoglobulins influence the numbers of bone marrow pre-B and B cells. European Journal of Immunology, 1991, 21, 1155-1161.	2.9	53
66	Clonal persistence of B lymphocytes in normal mice is determined by variable region-dependent selection. European Journal of Immunology, 1991, 21, 2239-2246.	2.9	18
67	Endogenous VH gene family expression in immunoglobulin-transgenic mice: evidence for selection of antibody repertoires. International Immunology, 1991, 3, 67-73.	4.0	33
68	Clonal analysis of B lymphocyte responses to Plasmodium chabaudi infection of normal and immunoprotected mice. International Immunology, 1991, 3, 1207-1216.	4.0	19
69	VH gene family repertoires of "viable motheaten―(mev) mice. European Journal of Immunology, 1990, 20, 1033-1037.	2.9	9
70	Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: minimal estimates of prodution and turnover rates of mature lymphocytes. European Journal of Immunology, 1990, 20, 1697-1708.	2.9	125
71	Divergency in the specificity of the induction and maintenance of neonatal suppression. European Journal of Immunology, 1990, 20, 1717-1721.	2.9	14
72	Selection of VH gene repertoires: differentiating B cells of adult bone marrow mimic fetal development. International Immunology, 1990, 2, 15-23.	4.0	82

AntÃ³nio A Freitas

#	Article	IF	CITATIONS
73	Transfer of T or CD8+ Cells from Hemorrhaged Mice Produce Alterations in Bacterial Antigen Specific Plasma Cell Repertoires in Normal Syngeneic Recipients. Immunobiology, 1990, 181, 379-387.	1.9	4
74	Population kinetics of peritoneal LPS-reactive B lymphocytes. International Immunology, 1990, 2, 73-81.	4.0	10
75	Immunoglobulin VH gene expression following hemorrhage. Molecular Immunology, 1990, 27, 921-927.	2.2	1
76	ESTABLISHMENT OF V-GENE REPERTOIRES IN NORMAL MICE. , 1990, , 125-128.		0
77	Lymphocyte population kinetics during the development of the immune system. B cell persistence and life-span can be determined by the host environment. International Immunology, 1989, 1, 237-246.	4.0	28
78	Hemorrhage in mice produces alterations in B cell repertoires. Cellular Immunology, 1989, 122, 208-217.	3.0	19
79	Immunoglobulin VH gene expression in Ly-1+ and conventional B lymphocytes. European Journal of Immunology, 1989, 19, 1117-1122.	2.9	39
80	Interleukin 2 receptor expression and interleukin 2 production in exponentially growing T cells: major differences betweenin vivo andin vitro proliferating T lymphocytes. European Journal of Immunology, 1989, 19, 1137-1145.	2.9	18
81	Expression of antibody V-regions is genetically and developmentally controlled and modulated by the B lymphocyte environment. International Immunology, 1989, 1, 342-354.	4.0	69
82	Hemorrhage in mice induces alterations in immunoglobulin-secreting B cells. Critical Care Medicine, 1989, 17, 1015-1019.	0.9	48
83	Secondary antibody responses to thymus-independent antigens. Decline and life-span of memory. European Journal of Immunology, 1988, 18, 1307-1314.	2.9	23
84	Long-lasting thymus-independent immune responses to anti-idiotype lipopolysaccharide conjugates require continuous B cell renewal. European Journal of Immunology, 1988, 18, 1433-1439.	2.9	4
85	Comparative study of VH gene family usage by newbornxid and non-xid mice, newborn NZB and adult NZB mice, and by splenic and peritoneal cavity B cell compartments. European Journal of Immunology, 1988, 18, 1979-1983.	2.9	19
86	The majority of "natural―immunoglobulin-secreting cells are short-lived and the progeny of cycling lymphocytes. European Journal of Immunology, 1987, 17, 849-854.	2.9	26
87	Altered fatty acid membrane composition modifies lymphocyte localization in vivo. Cellular Immunology, 1987, 106, 387-396.	3.0	20
88	Lymphocyte Population Kinetics in the Mouse. Immunological Reviews, 1986, 91, 5-38.	6.0	171
89	Antibody Repertoires of Normal BALB/c Mice: B Lymphocyte Populations Defined by State of Activation. Immunological Reviews, 1986, 93, 147-169.	6.0	127
90	Characterization of mouse thoracic duct B lymphocytes I. Evidence of functional heterogeneity. European Journal of Immunology, 1980, 10, 772-776.	2.9	4

#	Article	IF	CITATIONS
91	Factors which determine the accumulation of immunoblasts in gut and skin. Agents and Actions, 1976, 6, 32-39.	0.7	6