
Hui Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662590/publications.pdf Version: 2024-02-01

Hui Dou

#	Article	IF	CITATIONS
1	Thermally Chargeable Proton Capacitor Based on Redoxâ€Active Effect for Energy Storage and Lowâ€Grade Heat Conversion. Energy and Environmental Materials, 2023, 6, .	7.3	4
2	Targeted Deposition in a Lithiophilic Silverâ€Modified 3D Cu Host for Lithiumâ€Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
3	3D Printed Multilayer Graphite@SiO Structural Anode for Highâ€Loading Lithiumâ€lon Battery. Batteries and Supercaps, 2022, 5, .	2.4	5
4	Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nature Communications, 2022, 13, 132.	5.8	37
5	Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium–Sulfur Batteries. Nanomaterials, 2022, 12, 255.	1.9	7
6	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygenâ€Containing Groups. Advanced Functional Materials, 2022, 32, .	7.8	45
7	A Highâ€Voltage Lithiumâ€Metal Batteries Electrolyte Based on Fullyâ€Methylated Pivalonitrile. Batteries and Supercaps, 2022, 5, .	2.4	2
8	A Facile Surface Passivation Method to Stabilized Lithium Metal Anodes Facilitate the Practical Application of Quasiâ€Solidâ€State Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
9	Thermally Chargeable Ammoniumâ€lon Capacitor for Energy Storage and Lowâ€Grade Heat Harvesting. Batteries and Supercaps, 2022, 5, .	2.4	7
10	Three-Dimensional Cross-Linked Binder Based on Ionic Bonding for a High-Performance SiO _{<i>x</i>} Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4788-4795.	2.5	7
11	A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. Journal of Materials Science, 2022, 57, 9980-9991.	1.7	18
12	MnO2/carbon nanotube free-standing electrode recycled from spent manganese-oxygen battery as high-performance supercapacitor material. Journal of Materials Science, 2022, 57, 8818-8827.	1.7	11
13	Insight into the reversible conversion–(de)incorporation of redox-active dopants within a polymer-based electrode. Chemical Communications, 2021, 57, 6780-6783.	2.2	2
14	Deep Eutectic Solventâ€Induced Polyacrylonitrileâ€Derived Hierarchical Porous Carbon for Zincâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 680-686.	2.4	10
15	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	2.8	9
16	Stabilization of a 4.7â€V Highâ€Voltage Nickelâ€Rich Layered Oxide Cathode for Lithiumâ€Ion Batteries throug Boronâ€Based Surface Residual Lithiumâ€Tuned Interface Modification Engineering. ChemElectroChem, 2021, 8, 2014-2021.	h 1.7	11
17	B-doped SiOx composite with three dimensional conductive network for high performance lithium-ion battery anode. Journal of Materiomics, 2021, 7, 802-809.	2.8	11
18	Electrospinning oxygen-vacant TiNb24O62 nanowires simultaneously boosts electrons and ions transmission capacities toward superior lithium storage. Electrochimica Acta, 2021, 388, 138656.	2.6	14

#	Article	IF	CITATIONS
19	Nb ₃ O ₇ F mesocrystals: orientation formation and application in lithium ion capacitors. CrystEngComm, 2021, 23, 6012-6022.	1.3	2
20	Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery. Journal of Materials Science, 2021, 56, 6337-6348.	1.7	11
21	Facile <i>In Situ</i> Cross-Linked Robust Three-Dimensional Binder for High-Performance SiO _{<i>x</i>} Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 49313-49321.	4.0	16
22	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	2.5	31
23	Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries. Journal of Power Sources, 2021, 515, 230644.	4.0	19
24	Biomass-derived porous carbon electrodes for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 5166-5176.	1.7	60
25	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	5.2	5
26	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	14.4	45
27	Encapsulating Oxygenâ€Deficient TiNb ₂₄ O ₆₂ Microspheres by Nâ€Doped Carbon Nanolayer Boosts Capacity and Stability of Lithiumâ€Ion Battery. Batteries and Supercaps, 2020, 3, 1360-1369.	2.4	10
28	Rational Design of a Piezoelectric BaTiO ₃ Nanodot Surfaceâ€Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material for Highâ€Rate Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 3646-3652.	1.7	15
29	<i>In Situ</i> Tuning Residual Lithium Compounds and Constructing TiO ₂ Coating for Surface Modification of a Nickel-Rich Cathode toward High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 12423-12432.	2.5	26
30	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11206-11212.	2.5	25
31	Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode. Carbon, 2020, 167, 627-633.	5.4	29
32	Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. Journal of Materials Science, 2020, 55, 13127-13140.	1.7	8
33	Sodiumâ€ion capacitors: Materials, Mechanism, and Challenges. ChemSusChem, 2020, 13, 2522-2539.	3.6	90
34	Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 3956-3966.	5.2	58
35	Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. Journal of Colloid and Interface Science, 2020, 567, 75-83.	5.0	58
36	Efficient Synthesis of N-Doped SiO _{<i>x</i>} /C Composite Based on the Defect-Enriched Graphite Flake for Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 4394-4402.	2.5	30

#	Article	IF	CITATIONS
37	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
38	Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 2019, 7, 19668-19675.	5.2	138
39	Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte–Based Allâ€Solidâ€State Lithium–Sulfur Batteries by Atomic Layer Deposition. Small, 2019, 15, e1903952.	5.2	62
40	Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PEDOT core–shell nanorods. Journal of Materials Chemistry A, 2019, 7, 1030-1037.	5.2	56
41	Successive Cationic and Anionic (De)â€Intercalation/ Incorporation into an Ionâ€Doped Radical Conducting Polymer. Batteries and Supercaps, 2019, 2, 979-984.	2.4	4
42	Two π onjugated Covalent Organic Frameworks with Longâ€Term Cyclability at High Current Density for Lithium Ion Battery. Chemistry - A European Journal, 2019, 25, 15472-15476.	1.7	31
43	Three-dimensional porous MXene-derived carbon/nickel-manganese double hydroxide composite for high-performance hybrid capacitor. Journal of Electroanalytical Chemistry, 2019, 836, 118-124.	1.9	21
44	RbF as a Dendrite-Inhibiting Additive in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20804-20811.	4.0	48
45	Catalytic Growth of Graphitic Carbonâ€Coated Silicon as Highâ€Performance Anodes for Lithium Storage. Energy Technology, 2019, 7, 1900502.	1.8	5
46	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	4.6	31
47	Dual Dopamine Derived Polydopamine Coated Nâ€Doped Porous Carbon Spheres as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 10710-10717.	1.7	22
48	Engineering Ultrathin MoS ₂ Nanosheets Anchored on Nâ€Doped Carbon Microspheres with Pseudocapacitive Properties for Highâ€Performance Lithiumâ€Ion Capacitors. Small Methods, 2019, 3, 1900081.	4.6	96
49	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Doubleâ€Layer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
50	A novel aqueous ammonium dual-ion battery based on organic polymers. Journal of Materials Chemistry A, 2019, 7, 11314-11320.	5.2	99
51	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	4.8	75
52	Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance. Nanoscale Horizons, 2019, 4, 526-530.	4.1	32
53	Nanoâ€sized Titanium Nitride Functionalized Separator Improves Cycling Performance of Lithium Sulfur Batteries. ChemistrySelect, 2019, 4, 698-704.	0.7	19
54	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	2.5	12

#	Article	IF	CITATIONS
55	High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochimica Acta, 2018, 268, 512-519.	2.6	46
56	Highâ€Voltage Li ₂ SiO ₃ â^'LiNi _{0.5} Mn _{1.5} O ₄ Hollow Spheres Prepared through In Situ Aerosol Spray Pyrolysis towards Highâ€Energy Liâ€Ion Batteries. ChemElectroChem, 2018, 5, 1212-1218.	1.7	19
57	A functional interlayer as a polysulfides blocking layer for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2018, 42, 1431-1436.	1.4	39
58	Hierarchically Porous Multilayered Carbon Barriers for Highâ€Performance Li–S Batteries. Chemistry - A European Journal, 2018, 24, 3768-3775.	1.7	43
59	Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 2018, 390, 208-214.	4.0	56
60	Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon, 2018, 136, 204-210.	5.4	61
61	High Performance Aqueous Sodiumâ€Ion Capacitors Enabled by Pseudocapacitance of Layered MnO ₂ . Energy Technology, 2018, 6, 2146-2153.	1.8	32
62	Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Materials, 2018, 11, 8-15.	9.5	60
63	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	2.7	87
64	Aerosol‧pray Pyrolysis toward Preparation of Nanostructured Materials for Batteries and Supercapacitors. Small Methods, 2018, 2, 1700272.	4.6	48
65	Graphene scrolls coated Sb2S3 nanowires as anodes for sodium and lithium ion batteries. Nano Structures Nano Objects, 2018, 15, 197-204.	1.9	12
66	Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38101-38108.	4.0	59
67	Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte. Journal of Physical Chemistry C, 2018, 122, 22294-22300.	1.5	30
68	MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2018, 352, 695-703.	6.6	100
69	Structure-designed synthesis of yolk–shell hollow ZnFe ₂ O ₄ /C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17947-17958.	5.2	48
70	Nitrogenated Urchinâ€like Nb ₂ O ₅ Microspheres with Extraordinary Pseudocapacitive Properties for Lithiumâ€lon Capacitors. ChemElectroChem, 2018, 5, 1516-1524.	1.7	36
71	Highâ€Voltage LiNi _{0.45} Cr _{0.1} Mn _{1.45} O ₄ Cathode with Superlong Cycle Performance for Wide Temperature Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1704808.	7.8	91
72	Self-supported electrodes of Na ₂ Ti ₃ O ₇ nanoribbon array/graphene foam and graphene foam for quasi-solid-state Na-ion capacitors. Journal of Materials Chemistry A. 2017. 5. 5806-5812.	5.2	48

#	Article	IF	CITATIONS
73	Caterpillar-like graphene confining sulfur by restacking effect for high performance lithium sulfur batteries. Chemical Engineering Journal, 2017, 322, 454-462.	6.6	33
74	Mesoporous Silicon Anodes by Using Polybenzimidazole Derived Pyrrolic N-Enriched Carbon toward High-Energy Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1279-1287.	8.8	122
75	Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017, 20, 191-209.	8.3	402
76	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20306-20312.	4.0	96
77	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	5.8	263
78	MoS ₂ â€Nanosheetâ€Decorated 2D Titanium Carbide (MXene) as Highâ€Performance Anodes for Sodiumâ€ion Batteries. ChemElectroChem, 2017, 4, 1560-1565.	1.7	123
79	Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for Highâ€Performance Lithium–Sulfur Batteries. ChemElectroChem, 2017, 4, 362-368.	1.7	31
80	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	5.2	632
81	Nitrogenâ€Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat, 2017, 3, 895-901.	1.5	17
82	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	5.2	94
83	Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance. ACS Applied Materials & Interfaces, 2017, 9, 39610-39617.	4.0	152
84	<i>Ad hoc</i> solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 2544-2551.	15.6	82
85	Co ₃ O ₄ nanoneedle arrays as a multifunctional "super-reservoir―electrode for long cycle life Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 250-257.	5.2	147
86	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	4.6	215
87	Porous Silicon@Polythiophene Core–Shell Nanospheres for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 75-81.	1.2	13
88	Selfâ€5acrificial Templateâ€Directed Synthesis of Metal–Organic Frameworkâ€Derived Porous Carbon for Energyâ€5torage Devices. ChemElectroChem, 2016, 3, 668-674.	1.7	52
89	Interconnected core–shell pyrolyzed polyacrylonitrile@sulfur/carbon nanocomposites for rechargeable lithium–sulfur batteries. New Journal of Chemistry, 2016, 40, 7680-7686.	1.4	17
90	PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Advances, 2016, 6, 40650-40655.	1.7	81

#	Article	IF	CITATIONS
91	A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale, 2016, 8, 11136-11142.	2.8	53
92	An in situ confinement strategy to porous poly(3,4-ethylenedioxythiophene)/sulfur composites for lithium–sulfur batteries. RSC Advances, 2016, 6, 47858-47863.	1.7	9
93	Mesoporous carbon nanospheres inserting into graphene sheets for flexible supercapacitor film electrode. Materials Letters, 2016, 178, 304-307.	1.3	29
94	Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 2016, 4, 16879-16885.	5.2	33
95	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17
96	Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 2016, 327, 221-228.	4.0	253
97	Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy, 2016, 28, 232-240.	8.2	67
98	Effect of Graphene Modified Cu Current Collector on the Performance of Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30926-30932.	4.0	81
99	Flexible Sodiumâ€ion Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	7.8	270
100	Facile Synthesis of Nitrogen ontaining Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	1.7	17
101	Simple and mass-produced mechanochemical preparation of graphene nanosheet/polyaniline composite assisted with bifunctional ionic liquid. Functional Materials Letters, 2016, 09, 1650041.	0.7	4
102	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	1.7	19
103	Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 11165-11171.	4.0	49
104	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	5.2	70
105	Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Advances, 2015, 5, 13709-13714.	1.7	57
106	Frontispiece: Porous Nitrogen-Doped Carbon Microspheres Derived from Microporous Polymeric Organic Frameworks for High Performance Electric Double-Layer Capacitors. Chemistry - A European Journal, 2015, 21, .	1.7	0
107	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	1.7	7
108	Three-dimensionally ordered porous TiNb ₂ O ₇ nanotubes: a superior anode material for next generation hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16785-16790.	5.2	96

#	Article	IF	CITATIONS
109	Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16590-16597.	5.2	94
110	Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 2015, 39, 9497-9503.	1.4	75
111	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	4.0	77
112	Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. Journal of Materials Chemistry A, 2015, 3, 23268-23273.	5.2	82
113	Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Research, 2015, 8, 3066-3074.	5.8	95
114	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	4.6	572
115	Porous Nitrogenâ€Doped Carbon Microspheres Derived from Microporous Polymeric Organic Frameworks for High Performance Electric Double‣ayer Capacitors. Chemistry - A European Journal, 2015, 21, 2310-2314.	1.7	39
116	Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5352-5357.	5.2	403
117	Mechano-chemical synthesis of nanostructured FePO ₄ /MWCNTs composites as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19536-19541.	5.2	16
118	From biomolecule to Na ₃ V ₂ (PO ₄) ₃ /nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18606-18612.	5.2	65
119	Hierarchically Porous Carbon Encapsulating Sulfur as a Superior Cathode Material for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 194-199.	4.0	152
120	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	5.2	35
121	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	5.2	40
122	Functionalized ionic liquid-assisted mechanochemical synthesis of graphene nanosheet/polypyrrole nanocomposites. Materials Letters, 2012, 71, 57-59.	1.3	10
123	Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. Journal of Power Sources, 2012, 197, 319-324.	4.0	185
124	Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochimica Acta, 2011, 56, 9224-9232.	2.6	164
125	A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta, 2011, 56, 5115-5121.	2.6	243
126	Synthesis and electrochemical capacitance of core–shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochimica Acta, 2009, 54, 2335-2341.	2.6	112

#	Article	IF	CITATIONS
127	High-voltage aqueous symmetric electrochemical capacitor based on Ru0.7Sn0.3O2•nH2O electrodes in 1ÂM KOH. Journal of Solid State Electrochemistry, 2008, 12, 1645-1652.	1.2	13