
Hui Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662590/publications.pdf Version: 2024-02-01

Hui Dou

#	Article	IF	CITATIONS
1	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	5.2	632
2	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	4.6	572
3	Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5352-5357.	5.2	403
4	Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017, 20, 191-209.	8.3	402
5	Flexible Sodiumâ€Ion Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	7.8	270
6	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	5.8	263
7	Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 2016, 327, 221-228.	4.0	253
8	A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta, 2011, 56, 5115-5121.	2.6	243
9	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	4.6	215
10	Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. Journal of Power Sources, 2012, 197, 319-324.	4.0	185
11	Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochimica Acta, 2011, 56, 9224-9232.	2.6	164
12	Hierarchically Porous Carbon Encapsulating Sulfur as a Superior Cathode Material for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 194-199.	4.0	152
13	Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance. ACS Applied Materials & Interfaces, 2017, 9, 39610-39617.	4.0	152
14	Co ₃ O ₄ nanoneedle arrays as a multifunctional "super-reservoir―electrode for long cycle life Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 250-257.	5.2	147
15	Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 2019, 7, 19668-19675.	5.2	138
16	MoS ₂ â€Nanosheetâ€Decorated 2D Titanium Carbide (MXene) as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1560-1565.	1.7	123
17	Mesoporous Silicon Anodes by Using Polybenzimidazole Derived Pyrrolic N-Enriched Carbon toward High-Energy Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1279-1287.	8.8	122
18	Synthesis and electrochemical capacitance of core–shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochimica Acta, 2009, 54, 2335-2341.	2.6	112

#	Article	IF	CITATIONS
19	MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2018, 352, 695-703.	6.6	100
20	A novel aqueous ammonium dual-ion battery based on organic polymers. Journal of Materials Chemistry A, 2019, 7, 11314-11320.	5.2	99
21	Three-dimensionally ordered porous TiNb ₂ O ₇ nanotubes: a superior anode material for next generation hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16785-16790.	5.2	96
22	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20306-20312.	4.0	96
23	Engineering Ultrathin MoS ₂ Nanosheets Anchored on Nâ€Doped Carbon Microspheres with Pseudocapacitive Properties for Highâ€Performance Lithiumâ€Ion Capacitors. Small Methods, 2019, 3, 1900081.	4.6	96
24	Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Research, 2015, 8, 3066-3074.	5.8	95
25	Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16590-16597.	5.2	94
26	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	5.2	94
27	Highâ€Voltage LiNi _{0.45} Cr _{0.1} Mn _{1.45} O ₄ Cathode with Superlong Cycle Performance for Wide Temperature Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1704808.	7.8	91
28	Sodiumâ€ion capacitors: Materials, Mechanism, and Challenges. ChemSusChem, 2020, 13, 2522-2539.	3.6	90
29	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	2.7	87
30	Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. Journal of Materials Chemistry A, 2015, 3, 23268-23273.	5.2	82
31	<i>Ad hoc</i> solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 2544-2551.	15.6	82
32	PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Advances, 2016, 6, 40650-40655.	1.7	81
33	Effect of Graphene Modified Cu Current Collector on the Performance of Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30926-30932.	4.0	81
34	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	4.0	77
35	Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 2015, 39, 9497-9503.	1.4	75
36	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	4.8	75

#	Article	IF	CITATIONS
37	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	5.2	70
38	Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy, 2016, 28, 232-240.	8.2	67
39	From biomolecule to Na ₃ V ₂ (PO ₄) ₃ /nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18606-18612.	5.2	65
40	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
41	Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte–Based Allâ€Solidâ€State Lithium–Sulfur Batteries by Atomic Layer Deposition. Small, 2019, 15, e1903952.	5.2	62
42	Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon, 2018, 136, 204-210.	5.4	61
43	Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Materials, 2018, 11, 8-15.	9.5	60
44	Biomass-derived porous carbon electrodes for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 5166-5176.	1.7	60
45	Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38101-38108.	4.0	59
46	Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 3956-3966.	5.2	58
47	Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. Journal of Colloid and Interface Science, 2020, 567, 75-83.	5.0	58
48	Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Advances, 2015, 5, 13709-13714.	1.7	57
49	Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 2018, 390, 208-214.	4.0	56
50	Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PEDOT core–shell nanorods. Journal of Materials Chemistry A, 2019, 7, 1030-1037.	5.2	56
51	A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale, 2016, 8, 11136-11142.	2.8	53
52	Self‣acrificial Templateâ€Directed Synthesis of Metal–Organic Frameworkâ€Derived Porous Carbon for Energy‣torage Devices. ChemElectroChem, 2016, 3, 668-674.	1.7	52
53	Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 11165-11171.	4.0	49
54	Self-supported electrodes of Na ₂ Ti ₃ O ₇ nanoribbon array/graphene foam and graphene foam for quasi-solid-state Na-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 5806-5812.	5.2	48

#	Article	IF	CITATIONS
55	Aerosol‧pray Pyrolysis toward Preparation of Nanostructured Materials for Batteries and Supercapacitors. Small Methods, 2018, 2, 1700272.	4.6	48
56	Structure-designed synthesis of yolk–shell hollow ZnFe ₂ O ₄ /C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17947-17958.	5.2	48
57	RbF as a Dendrite-Inhibiting Additive in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20804-20811.	4.0	48
58	High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochimica Acta, 2018, 268, 512-519.	2.6	46
59	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	14.4	45
60	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygen ontaining Groups. Advanced Functional Materials, 2022, 32, .	7.8	45
61	Hierarchically Porous Multilayered Carbon Barriers for Highâ€Performance Li–S Batteries. Chemistry - A European Journal, 2018, 24, 3768-3775.	1.7	43
62	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	5.2	40
63	Porous Nitrogenâ€Doped Carbon Microspheres Derived from Microporous Polymeric Organic Frameworks for High Performance Electric Doubleâ€Layer Capacitors. Chemistry - A European Journal, 2015, 21, 2310-2314.	1.7	39
64	A functional interlayer as a polysulfides blocking layer for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2018, 42, 1431-1436.	1.4	39
65	Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nature Communications, 2022, 13, 132.	5.8	37
66	Nitrogenated Urchinâ€like Nb ₂ O ₅ Microspheres with Extraordinary Pseudocapacitive Properties for Lithiumâ€lon Capacitors. ChemElectroChem, 2018, 5, 1516-1524.	1.7	36
67	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	5.2	35
68	Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 2016, 4, 16879-16885.	5.2	33
69	Caterpillar-like graphene confining sulfur by restacking effect for high performance lithium sulfur batteries. Chemical Engineering Journal, 2017, 322, 454-462.	6.6	33
70	High Performance Aqueous Sodiumâ€lon Capacitors Enabled by Pseudocapacitance of Layered MnO ₂ . Energy Technology, 2018, 6, 2146-2153.	1.8	32
71	Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance. Nanoscale Horizons, 2019, 4, 526-530.	4.1	32
72	Highly Conductive and Lightweight Composite Film as Polysulfide Reservoir for Highâ€Performance Lithium–Sulfur Batteries. ChemElectroChem, 2017, 4, 362-368.	1.7	31

#	Article	IF	CITATIONS
73	Two π onjugated Covalent Organic Frameworks with Longâ€Term Cyclability at High Current Density for Lithium Ion Battery. Chemistry - A European Journal, 2019, 25, 15472-15476.	1.7	31
74	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	4.6	31
75	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	2.5	31
76	Enhanced Cycle Performance of Polyimide Cathode Using a Quasi-Solid-State Electrolyte. Journal of Physical Chemistry C, 2018, 122, 22294-22300.	1.5	30
77	Efficient Synthesis of N-Doped SiO _{<i>x</i>} /C Composite Based on the Defect-Enriched Graphite Flake for Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 4394-4402.	2.5	30
78	Mesoporous carbon nanospheres inserting into graphene sheets for flexible supercapacitor film electrode. Materials Letters, 2016, 178, 304-307.	1.3	29
79	Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode. Carbon, 2020, 167, 627-633.	5.4	29
80	<i>In Situ</i> Tuning Residual Lithium Compounds and Constructing TiO ₂ Coating for Surface Modification of a Nickel-Rich Cathode toward High-Energy Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 12423-12432.	2.5	26
81	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11206-11212.	2.5	25
82	Dual Dopamine Derived Polydopamine Coated Nâ€Đoped Porous Carbon Spheres as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 10710-10717.	1.7	22
83	Three-dimensional porous MXene-derived carbon/nickel-manganese double hydroxide composite for high-performance hybrid capacitor. Journal of Electroanalytical Chemistry, 2019, 836, 118-124.	1.9	21
84	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	1.7	19
85	Highâ€Voltage Li ₂ SiO ₃ â^'LiNi _{0.5} Mn _{1.5} O ₄ Hollow Spheres Prepared through In Situ Aerosol Spray Pyrolysis towards Highâ€Energy Liâ€Ion Batteries. ChemElectroChem, 2018, 5, 1212-1218.	1.7	19
86	Nanoâ€sized Titanium Nitride Functionalized Separator Improves Cycling Performance of Lithium Sulfur Batteries. ChemistrySelect, 2019, 4, 698-704.	0.7	19
87	Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries. Journal of Power Sources, 2021, 515, 230644.	4.0	19
88	A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. Journal of Materials Science, 2022, 57, 9980-9991.	1.7	18
89	Interconnected core–shell pyrolyzed polyacrylonitrile@sulfur/carbon nanocomposites for rechargeable lithium–sulfur batteries. New Journal of Chemistry, 2016, 40, 7680-7686.	1.4	17
90	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17

#	Article	IF	CITATIONS
91	Facile Synthesis of Nitrogen ontaining Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	1.7	17
92	Nitrogenâ€Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat, 2017, 3, 895-901.	1.5	17
93	Mechano-chemical synthesis of nanostructured FePO ₄ /MWCNTs composites as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19536-19541.	5.2	16
94	Facile <i>In Situ</i> Cross-Linked Robust Three-Dimensional Binder for High-Performance SiO _{<i>x</i>} Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 49313-49321.	4.0	16
95	Rational Design of a Piezoelectric BaTiO ₃ Nanodot Surfaceâ€Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material for Highâ€Rate Lithiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3646-3652.	1.7	15
96	Electrospinning oxygen-vacant TiNb24O62 nanowires simultaneously boosts electrons and ions transmission capacities toward superior lithium storage. Electrochimica Acta, 2021, 388, 138656.	2.6	14
97	High-voltage aqueous symmetric electrochemical capacitor based on Ru0.7Sn0.3O2•nH2O electrodes in 1ÂM KOH. Journal of Solid State Electrochemistry, 2008, 12, 1645-1652.	1.2	13
98	Porous Silicon@Polythiophene Core–Shell Nanospheres for Lithiumâ€ l on Batteries. Particle and Particle Systems Characterization, 2016, 33, 75-81.	1.2	13
99	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	2.5	12
100	Graphene scrolls coated Sb2S3 nanowires as anodes for sodium and lithium ion batteries. Nano Structures Nano Objects, 2018, 15, 197-204.	1.9	12
101	Stabilization of a 4.7â€V Highâ€Voltage Nickelâ€Rich Layered Oxide Cathode for Lithiumâ€Ion Batteries througl Boronâ€Based Surface Residual Lithiumâ€Tuned Interface Modification Engineering. ChemElectroChem, 2021, 8, 2014-2021.	h 1.7	11
102	B-doped SiOx composite with three dimensional conductive network for high performance lithium-ion battery anode. Journal of Materiomics, 2021, 7, 802-809.	2.8	11
103	Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery. Journal of Materials Science, 2021, 56, 6337-6348.	1.7	11
104	Targeted Deposition in a Lithiophilic Silverâ€Modified 3D Cu Host for Lithiumâ€Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
105	MnO2/carbon nanotube free-standing electrode recycled from spent manganese-oxygen battery as high-performance supercapacitor material. Journal of Materials Science, 2022, 57, 8818-8827.	1.7	11
106	Functionalized ionic liquid-assisted mechanochemical synthesis of graphene nanosheet/polypyrrole nanocomposites. Materials Letters, 2012, 71, 57-59.	1.3	10
107	Encapsulating Oxygenâ€Deficient TiNb ₂₄ O ₆₂ Microspheres by Nâ€Doped Carbon Nanolayer Boosts Capacity and Stability of Lithiumâ€ŀon Battery. Batteries and Supercaps, 2020, 3, 1360-1369.	2.4	10
108	Deep Eutectic Solventâ€Induced Polyacrylonitrileâ€Derived Hierarchical Porous Carbon for Zincâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 680-686.	2.4	10

#	Article	IF	CITATIONS
109	An in situ confinement strategy to porous poly(3,4-ethylenedioxythiophene)/sulfur composites for lithium–sulfur batteries. RSC Advances, 2016, 6, 47858-47863.	1.7	9
110	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Double‣ayer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
111	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	2.8	9
112	Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. Journal of Materials Science, 2020, 55, 13127-13140.	1.7	8
113	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	1.7	7
114	Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium–Sulfur Batteries. Nanomaterials, 2022, 12, 255.	1.9	7
115	Thermally Chargeable Ammonium″on Capacitor for Energy Storage and Lowâ€Grade Heat Harvesting. Batteries and Supercaps, 2022, 5, .	2.4	7
116	Three-Dimensional Cross-Linked Binder Based on Ionic Bonding for a High-Performance SiO _{<i>x</i>} Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4788-4795.	2.5	7
117	A Facile Surface Passivation Method to Stabilized Lithium Metal Anodes Facilitate the Practical Application of Quasiâ€Solidâ€State Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
118	Catalytic Growth of Graphitic Carbon oated Silicon as Highâ€Performance Anodes for Lithium Storage. Energy Technology, 2019, 7, 1900502.	1.8	5
119	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	5.2	5
120	3D Printed Multilayer Graphite@SiO Structural Anode for High‣oading Lithiumâ€ŀon Battery. Batteries and Supercaps, 2022, 5, .	2.4	5
121	Simple and mass-produced mechanochemical preparation of graphene nanosheet/polyaniline composite assisted with bifunctional ionic liquid. Functional Materials Letters, 2016, 09, 1650041.	0.7	4
122	Successive Cationic and Anionic (De)â€Intercalation/ Incorporation into an Ionâ€Doped Radical Conducting Polymer. Batteries and Supercaps, 2019, 2, 979-984.	2.4	4
123	Thermally Chargeable Proton Capacitor Based on Redoxâ€Active Effect for Energy Storage and Lowâ€Grade Heat Conversion. Energy and Environmental Materials, 2023, 6, .	7.3	4
124	Insight into the reversible conversion–(de)incorporation of redox-active dopants within a polymer-based electrode. Chemical Communications, 2021, 57, 6780-6783.	2.2	2
125	Nb ₃ O ₇ F mesocrystals: orientation formation and application in lithium ion capacitors. CrystEngComm, 2021, 23, 6012-6022.	1.3	2
126	A Highâ€Voltage Lithiumâ€Metal Batteries Electrolyte Based on Fullyâ€Methylated Pivalonitrile. Batteries and Supercaps, 2022, 5, .	2.4	2

#	Article	IF	CITATIONS
127	Frontispiece: Porous Nitrogen-Doped Carbon Microspheres Derived from Microporous Polymeric Organic Frameworks for High Performance Electric Double-Layer Capacitors. Chemistry - A European Journal, 2015, 21, .	1.7	0