Christel A S Bergström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662582/publications.pdf

Version: 2024-02-01

143 papers 6,783 citations

45 h-index 69246 77 g-index

150 all docs

150 docs citations

150 times ranked

6870 citing authors

#	Article	IF	Citations
1	Comparison of Cellular Monolayers and an Artificial Membrane as Absorptive Membranes in the in vitro Lipolysis-permeation Assay. Journal of Pharmaceutical Sciences, 2022, 111, 175-184.	3.3	7
2	Manipulations and age-appropriateness of oral medications in pediatric oncology patients in Sweden: Need for personalized dosage forms. Biomedicine and Pharmacotherapy, 2022, 146, 112576.	5.6	8
3	Pharmaceutical profiling and molecular dynamics simulations reveal crystallization effects in amorphous formulations. International Journal of Pharmaceutics, 2022, 613, 121360.	5.2	8
4	Gastrointestinal mucus in dog: Physiological characteristics, composition, and structural properties. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 92-102.	4.3	12
5	Impact of Intestinal Concentration and Colloidal Structure on the Permeation-Enhancing Efficiency of Sodium Caprate in the Rat. Molecular Pharmaceutics, 2022, 19, 200-212.	4.6	12
6	Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21978-21988.	8.0	5
7	Intestinal Absorption of FITC-Dextrans and Macromolecular Model Drugs in the Rat Intestinal Instillation Model. Molecular Pharmaceutics, 2022, 19, 2564-2572.	4.6	8
8	Membrane insertion mechanism of the caveola coat protein Cavin1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
9	InÂVitro and InÂVivo Evaluation of 3D Printed Capsules with Pressure Triggered Release Mechanism for Oral Peptide Delivery. Journal of Pharmaceutical Sciences, 2021, 110, 228-238.	3.3	19
10	Synergistic Computational Modeling Approaches as Team Players in the Game of Solubility Predictions. Journal of Pharmaceutical Sciences, 2021, 110, 22-34.	3.3	13
11	Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. Journal of Pharmaceutical Sciences, 2021, 110, 176-185.	3.3	16
12	A Tribute to Professor Per Artursson - Scientist, Explorer, Mentor, Innovator, and Giant in Pharmaceutical Research. Journal of Pharmaceutical Sciences, 2021, 110, 2-11.	3.3	1
13	Contemporary Formulation Development for Inhaled Pharmaceuticals. Journal of Pharmaceutical Sciences, 2021, 110, 66-86.	3.3	26
14	3D-printing of solid lipid tablets from emulsion gels. International Journal of Pharmaceutics, 2021, 597, 120304.	5.2	50
15	Celebrating Women in the Pharmaceutical Sciences. Molecular Pharmaceutics, 2021, 18, 1487-1490.	4.6	2
16	Utilizing Laser Activation of Photothermal Plasmonic Nanoparticles to Induce On-Demand Drug Amorphization inside a Tablet. Molecular Pharmaceutics, 2021, 18, 2254-2262.	4.6	8
17	Enhanced UV protection and water adsorption properties of transparent poly(methyl methacrylate) films through incorporation of amorphous magnesium carbonate nanoparticles. Journal of Polymer Research, 2021, 28, 1.	2.4	3
18	3D-Printed Mesoporous Carrier System for Delivery of Poorly Soluble Drugs. Pharmaceutics, 2021, 13, 1096.	4.5	17

#	Article	IF	CITATIONS
19	Investigation of Self-Emulsifying Drug-Delivery System Interaction with a Biomimetic Membrane under Conditions Relevant to the Small Intestine. Langmuir, 2021, 37, 10200-10213.	3.5	8
20	Design and Evaluation of New Quinazolin-4(3 <i>H</i>)-one Derived PqsR Antagonists as Quorum Sensing Quenchers in <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2021, 7, 2666-2685.	3.8	22
21	Increasing the Transport of Celecoxib over a Simulated Intestine Cell Membrane Model Using Mesoporous Magnesium Carbonate. Molecules, 2021, 26, 6353.	3.8	4
22	Physiological properties, composition and structural profiling of porcine gastrointestinal mucus. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 156-167.	4.3	20
23	Impact of Simulated Intestinal Fluids on Dissolution, Solution Chemistry, and Membrane Transport of Amorphous Multidrug Formulations. Molecular Pharmaceutics, 2021, 18, 4079-4089.	4.6	1
24	Influence of Bile Composition on Membrane Incorporation of Transient Permeability Enhancers. Molecular Pharmaceutics, 2020, 17, 4226-4240.	4.6	24
25	Molecular Dynamics Simulations on Interindividual Variability of Intestinal Fluids: Impact on Drug Solubilization. Molecular Pharmaceutics, 2020, 17, 3837-3844.	4.6	18
26	Model-Informed Drug Discovery and Development in Pulmonary Delivery: Biopharmaceutical Pharmacometric Modeling for Formulation Evaluation of Pulmonary Suspensions. ACS Omega, 2020, 5, 25733-25746.	3.5	6
27	Insights into Dissolution and Solution Chemistry of Multidrug Formulations of Antihypertensive Drugs. Molecular Pharmaceutics, 2020, 17, 4018-4028.	4.6	3
28	Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels. ACS Nano, 2020, 14, 17004-17017.	14.6	101
29	In Vitro Performance and Chemical Stability of Lipid-Based Formulations Encapsulated in a Mesoporous Magnesium Carbonate Carrier. Pharmaceutics, 2020, 12, 426.	4.5	7
30	Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Frontiers in Chemistry, 2020, 8, 204.	3.6	29
31	Intrinsic Dissolution Rate Profiling of Poorly Water-Soluble Compounds in Biorelevant Dissolution Media. Pharmaceutics, 2020, 12, 493.	4.5	23
32	Selection of In Vivo Predictive Dissolution Media Using Drug Substance and Physiological Properties. AAPS Journal, 2020, 22, 34.	4.4	44
33	An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 21-29.	4.3	21
34	Model-Informed Drug Development in Pulmonary Delivery: Semimechanistic Pharmacokinetic–Pharmacodynamic Modeling for Evaluation of Treatments against Chronic <i>Pseudomonas aeruginosa</i> Lung Infections. Molecular Pharmaceutics, 2020, 17, 1458-1469.	4.6	8
35	Multifunctional Polymer-Free Mineral Plastic Adhesives Formed by Multiple Noncovalent Bonds. ACS Applied Materials & Damp; Interfaces, 2020, 12, 7403-7410.	8.0	9
36	Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug–Drug Interactions. Pharmaceutics, 2020, 12, 390.	4.5	9

#	Article	IF	CITATIONS
37	Electrochemically Active, Compressible, and Conducting Silk Fibroin Hydrogels. Industrial & Engineering Chemistry Research, 2020, 59, 9310-9317.	3.7	27
38	Suitability of Artificial Membranes in Lipolysis-Permeation Assays of Oral Lipid-Based Formulations. Pharmaceutical Research, 2020, 37, 99.	3.5	15
39	Strategies of solubility enhancement and perspectives in solubility measurements of pharmaceutical compounds. ADMET and DMPK, 2020, 8, 176-179.	2.1	O
40	Evaluation of an alkali-treated and hydroxyapatite-coated orthopedic implant loaded with tobramycin. Journal of Biomaterials Applications, 2019, 34, 699-720.	2.4	7
41	Supersaturation Potential of Amorphous Active Pharmaceutical Ingredients after Long-Term Storage. Molecules, 2019, 24, 2731.	3.8	6
42	Lipolysis-Permeation Setup for Simultaneous Study of Digestion and Absorption in Vitro. Molecular Pharmaceutics, 2019, 16, 921-930.	4.6	57
43	Long-Term Physical (In)Stability of Spray-Dried Amorphous Drugs: Relationship with Glass-Forming Ability and Physicochemical Properties. Pharmaceutics, 2019, 11, 425.	4.5	14
44	The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach. Molecular Pharmaceutics, 2019, 16, 4636-4650.	4.6	9
45	Molecular Drivers of Crystallization Kinetics for Drugs in Supersaturated Aqueous Solutions. Journal of Pharmaceutical Sciences, 2019, 108, 252-259.	3.3	8
46	Does the Intake of Ethanol Affect Oral Absorption of Poorly Soluble Drugs?. Journal of Pharmaceutical Sciences, 2019, 108, 1765-1771.	3.3	6
47	Aggregation Behavior of Medium Chain Fatty Acids Studied by Coarse-Grained Molecular Dynamics Simulation. AAPS PharmSciTech, 2019, 20, 61.	3.3	33
48	Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. European Journal of Pharmaceutical Sciences, 2019, 137, 104967.	4.0	222
49	Thromboinflammation as bioactivity assessment of H2O2-alkali modified titanium surfaces. Journal of Materials Science: Materials in Medicine, 2019, 30, 66.	3.6	2
50	Effect of lipids on absorption of carvedilol in dogs: Is coadministration of lipids as efficient as a lipid-based formulation?. Journal of Controlled Release, 2019, 304, 90-100.	9.9	30
51	Biorelevant intrinsic dissolution profiling in early drug development: Fundamental, methodological, and industrial aspects. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 101-114.	4.3	21
52	Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 46-55.	4.3	73
53	Perspectives in solubility measurement and interpretation. ADMET and DMPK, 2019, 7, 88-105.	2.1	43
54	Synthesis and characterization of amorphous magnesium carbonate nanoparticles. Materials Chemistry and Physics, 2019, 224, 301-307.	4.0	13

#	Article	IF	CITATIONS
55	Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Materials Science and Engineering C, 2019, 96, 272-279.	7.3	44
56	Model-Based Drug Development in Pulmonary Delivery: Pharmacokinetic Analysis of Novel Drug Candidates for Treatment of Pseudomonas aeruginosa Lung Infection. Journal of Pharmaceutical Sciences, 2019, 108, 630-640.	3.3	14
57	Caco-2 Cell Conditions Enabling Studies of Drug Absorption from Digestible Lipid-Based Formulations. Pharmaceutical Research, 2018, 35, 74.	3.5	55
58	Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International Journal of Pharmaceutics, 2018, 540, 185-193.	5.2	153
59	Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Carbohydrate Polymers, 2018, 181, 345-350.	10.2	79
60	Automated assays for thermodynamic (equilibrium) solubility determination. Drug Discovery Today: Technologies, 2018, 27, 11-19.	4.0	37
61	Debridement of Bacterial Biofilms with TiO ₂ /H ₂ O ₂ Solutions and Visible Light Irradiation. International Journal of Biomaterials, 2018, 2018, 1-8.	2.4	1
62	Amorphous magnesium carbonate nanoparticles with strong stabilizing capability for amorphous ibuprofen. International Journal of Pharmaceutics, 2018, 548, 515-521.	5.2	10
63	Impact of Drug Physicochemical Properties on Lipolysis-Triggered Drug Supersaturation and Precipitation from Lipid-Based Formulations. Molecular Pharmaceutics, 2018, 15, 4733-4744.	4.6	36
64	A Modified In Situ Method to Determine Release from a Complex Drug Carrier in Particle-Rich Suspensions. AAPS PharmSciTech, 2018, 19, 2859-2865.	3.3	6
65	Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). European Journal of Pharmaceutical Sciences, 2017, 103, 70-76.	4.0	27
66	Enhanced release of poorly water-soluble drugs from synergy between mesoporous magnesium carbonate and polymers. International Journal of Pharmaceutics, 2017, 525, 183-190.	5.2	18
67	Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways. Journal of Controlled Release, 2017, 256, 193-202.	9.9	63
68	The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharmaceutical Research, 2017, 34, 1754-1772.	3.5	71
69	Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells. Journal of Materials Chemistry C, 2017, 5, 11111-11120.	5.5	18
70	Investigation of the Intra- and Interlaboratory Reproducibility of a Small Scale Standardized Supersaturation and Precipitation Method. Molecular Pharmaceutics, 2017, 14, 4161-4169.	4.6	12
71	Organic degradation potential of a TiO 2 /H 2 O 2 /UV–vis system for dental applications. Journal of Dentistry, 2017, 67, 53-57.	4.1	8
72	Molecular Structuring and Phase Transition of Lipid-Based Formulations upon Water Dispersion: A Coarse-Grained Molecular Dynamics Simulation Approach. Molecular Pharmaceutics, 2017, 14, 4145-4153.	4.6	17

#	Article	IF	CITATIONS
73	Characterization of Solubilizing Nanoaggregates Present in Different Versions of Simulated Intestinal Fluid. Journal of Physical Chemistry B, 2017, 121, 10869-10881.	2.6	51
74	Controlled Suspensions Enable Rapid Determinations of Intrinsic Dissolution Rate and Apparent Solubility of Poorly Water-Soluble Compounds. Pharmaceutical Research, 2017, 34, 1805-1816.	3.5	18
75	Dynamics of water confined in mesoporous magnesium carbonate. Journal of Chemical Physics, 2016, 145, 234503.	3.0	O
76	50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Advanced Drug Delivery Reviews, 2016, 101, 167-194.	13.7	308
77	Diffusion-Controlled Drug Release From the Mesoporous Magnesium Carbonate Upsalite \hat{A}^{\otimes} . Journal of Pharmaceutical Sciences, 2016, 105, 657-663.	3.3	37
78	Rapid determination of drug solubilization versus supersaturation in natural and digested lipids. International Journal of Pharmaceutics, 2016, 513, 164-174.	5.2	25
79	Supersaturation of poorly soluble drugs induced by mesoporous magnesium carbonate. European Journal of Pharmaceutical Sciences, 2016, 93, 468-474.	4.0	22
80	Partitioning into Colloidal Structures of Fasted State Intestinal Fluid Studied by Molecular Dynamics Simulations. Langmuir, 2016, 32, 12732-12740.	3.5	19
81	Investigation of the Antibacterial Effect of Mesoporous Magnesium Carbonate. ACS Omega, 2016, 1, 907-914.	3.5	13
82	Understanding the Challenge of Beyond-Rule-of-5 Compounds. Advanced Drug Delivery Reviews, 2016, 101, 1-5.	13.7	17
83	Interlaboratory Validation of Small-Scale Solubility and Dissolution Measurements of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, 2016, 105, 2864-2872.	3.3	38
84	Tools for Early Prediction of Drug Loading in Lipid-Based Formulations. Molecular Pharmaceutics, 2016, 13, 251-261.	4.6	67
85	Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations. Journal of Controlled Release, 2016, 229, 172-182.	9.9	43
86	In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films. Journal of Materials Science: Materials in Medicine, 2016, 27, 49.	3.6	4
87	Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Advanced Drug Delivery Reviews, 2016, 101, 6-21.	13.7	129
88	Computational modeling to predict the functions and impact of drug transporters. In Silico Pharmacology, 2015, 3, 8.	3.3	21
89	Dielectric Spectroscopy Study of Water Behavior in Calcined Upsalite: A Mesoporous Magnesium Carbonate without Organic Surface Groups. Journal of Physical Chemistry C, 2015, 119, 15680-15688.	3.1	7
90	Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. International Journal of Pharmaceutics, 2015, 495, 312-317.	5.2	75

#	Article	IF	CITATIONS
91	Models for Predicting Drug Absorption From Oral Lipid-Based Formulations. Current Molecular Biology Reports, 2015, 1, 141-147.	1.6	10
92	Intestinal solubility and absorption of poorly water soluble compounds: predictions, challenges and solutions. Therapeutic Delivery, 2015, 6, 935-959.	2.2	38
93	Concomitant intake of alcohol may increase the absorption of poorly soluble drugs. European Journal of Pharmaceutical Sciences, 2015, 67, 12-20.	4.0	38
94	Reactive combinatorial synthesis and characterization of a gradient Ag–Ti oxide thin film with antibacterial properties. Acta Biomaterialia, 2015, 11, 503-510.	8.3	39
95	Computational Prediction of Drug Solubility in Fasted Simulated and Aspirated Human Intestinal Fluid. Pharmaceutical Research, 2015, 32, 578-589.	3.5	54
96	Experimental and Computational Prediction of Glass Transition Temperature of Drugs. Journal of Chemical Information and Modeling, 2014, 54, 3396-3403.	5.4	41
97	Is the full potential of the biopharmaceutics classification system reached?. European Journal of Pharmaceutical Sciences, 2014, 57, 224-231.	4.0	50
98	Bacteria viability assessment after photocatalytic treatment. 3 Biotech, 2014, 4, 149-157.	2.2	10
99	Early pharmaceutical profiling to predict oral drug absorption: Current status and unmet needs. European Journal of Pharmaceutical Sciences, 2014, 57, 173-199.	4.0	221
100	Pyridyl Benzamides as a Novel Class of Potent Inhibitors for the Kinetoplastid <i>Trypanosoma brucei</i> . Journal of Medicinal Chemistry, 2014, 57, 6393-6402.	6.4	53
101	Computational Predictions of Glass-Forming Ability and Crystallization Tendency of Drug Molecules. Molecular Pharmaceutics, 2014, 11, 3123-3132.	4.6	79
102	Formulation of the Microbicide INP0341 for In Vivo Protection against a Vaginal Challenge by Chlamydia trachomatis. PLoS ONE, 2014, 9, e110918.	2.5	10
103	Computational Prediction of Drug Solubility in Lipid Based Formulation Excipients. Pharmaceutical Research, 2013, 30, 3225-3237.	3.5	86
104	Early Identification of Clinically Relevant Drug Interactions With the Human Bile Salt Export Pump (BSEP/ABCB11). Toxicological Sciences, 2013, 136, 328-343.	3.1	133
105	Optimizing Solubility and Permeability of a Biopharmaceutics Classification System (BCS) Class 4 Antibiotic Drug Using Lipophilic Fragments Disturbing the Crystal Lattice. Journal of Medicinal Chemistry, 2013, 56, 2690-2694.	6.4	50
106	Stability and prospect of UV/H2O2 activated titania films for biomedical use. Applied Surface Science, 2013, 285, 317-323.	6.1	18
107	Evaluation of the Structural Determinants of Polymeric Precipitation Inhibitors Using Solvent Shift Methods and Principle Component Analysis. Molecular Pharmaceutics, 2013, 10, 2823-2848.	4.6	48
108	Early drug development predictions of glass-forming ability and physical stability of drugs. European Journal of Pharmaceutical Sciences, 2013, 49, 323-332.	4.0	93

#	Article	IF	Citations
109	Synergetic inactivation of <i>Staphylococcus epidermidis</i> and <i>Streptococcus mutans</i>in a TiO ₂ /H ₂ O ₂ /UV system. Biomatter, 2013, 3, .	2.6	19
110	Computational Prediction of CNS Drug Exposure Based on a Novel In Vivo Dataset. Pharmaceutical Research, 2012, 29, 3131-3142.	3 . 5	21
111	Ethanol Effects on Apparent Solubility of Poorly Soluble Drugs in Simulated Intestinal Fluid. Molecular Pharmaceutics, 2012, 9, 1942-1952.	4.6	60
112	A Method for Quantitative Determination of Biofilm Viability. Journal of Functional Biomaterials, 2012, 3, 418-431.	4.4	81
113	In Vitro and In Silico Strategies to Identify OATP1B1 Inhibitors and Predict Clinical Drug–Drug Interactions. Pharmaceutical Research, 2012, 29, 411-426.	3.5	108
114	Toward <i>In Silico</i> Prediction of Glass-Forming Ability from Molecular Structure Alone: A Screening Tool in Early Drug Development. Molecular Pharmaceutics, 2011, 8, 498-506.	4.6	74
115	Structural Features Determining the Intestinal Epithelial Permeability and Efflux of Novel HIV-1 Protease Inhibitors. Journal of Pharmaceutical Sciences, 2011, 100, 3763-3772.	3.3	12
116	The importance of gel properties for mucoadhesion measurements: a multivariate data analysis approach. Journal of Pharmacy and Pharmacology, 2010, 56, 161-168.	2.4	18
117	A Modified Physiological BCS for Prediction of Intestinal Absorption in Drug Discovery. Molecular Pharmaceutics, 2010, 7, 1478-1487.	4.6	47
118	Dissolution Rate and Apparent Solubility of Poorly Soluble Drugs in Biorelevant Dissolution Media. Molecular Pharmaceutics, 2010, 7, 1419-1430.	4.6	152
119	Hepatitis C virus NS3 protease inhibitors: Large, flexible molecules of peptide origin show satisfactory permeability across Caco-2 cells. European Journal of Pharmaceutical Sciences, 2009, 38, 556-563.	4.0	14
120	Identification of Novel Specific and General Inhibitors of the Three Major Human ATP-Binding Cassette Transporters P-gp, BCRP and MRP2 Among Registered Drugs. Pharmaceutical Research, 2009, 26, 1816-1831.	3.5	276
121	Order and Disorder in Powder Mixtures: Spatial Distribution Functions as Tools to Assess Powder Homogeneity. Particle and Particle Systems Characterization, 2008, 25, 397-405.	2.3	O
122	Biodegradable Ionomers for the Loading and Release of Proteins: Formation, Characterization, Mechanism, and Consequence of Water Uptake. ACS Symposium Series, 2008, , 250-266.	0.5	0
123	Determining the static dielectric permittivity of ion conducting materials when obscured by electrode polarization. Applied Physics Letters, 2008, 93, 092901.	3.3	9
124	Molecular Characteristics for Solid-State Limited Solubility. Journal of Medicinal Chemistry, 2008, 51, 3035-3039.	6.4	95
125	Prediction and Identification of Drug Interactions with the Human ATP-Binding Cassette Transporter Multidrug-Resistance Associated Protein 2 (MRP2; ABCC2). Journal of Medicinal Chemistry, 2008, 51, 3275-3287.	6.4	119
126	Structural Requirements for Drug Inhibition of the Liver Specific Human Organic Cation Transport Protein 1. Journal of Medicinal Chemistry, 2008, 51, 5932-5942.	6.4	175

#	Article	IF	Citations
127	Environment-Induced Surface Dynamics of a Biomimetic Ionomer Studied Using in Situ Second Harmonic Generation. Journal of Physical Chemistry B, 2008, 112, 11573-11579.	2.6	O
128	A Global Drug Inhibition Pattern for the Human ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (ABCG2). Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 19-30.	2.5	115
129	Poorly Soluble Marketed Drugs Display Solvation Limited Solubility. Journal of Medicinal Chemistry, 2007, 50, 5858-5862.	6.4	153
130	Molecular Dynamics of a Biodegradable Biomimetic Ionomer Studied by Broadband Dielectric Spectroscopy. Langmuir, 2007, 23, 10209-10215.	3.5	4
131	Photoinduced Formation of N2Molecules in Ammonium Compounds. Journal of Physical Chemistry A, 2007, 111, 9662-9669.	2.5	11
132	Contribution of solid-state properties to the aqueous solubility of drugs. European Journal of Pharmaceutical Sciences, 2006, 29, 294-305.	4.0	122
133	Prediction of ADMET Properties. ChemMedChem, 2006, 1, 920-937.	3.2	194
134	Comparative Drug Release Measurements in Limited Amounts of Liquid: A Suppository Formulation Study. Current Drug Delivery, 2006, 3, 299-306.	1.6	1
135	In silico Predictions of Drug Solubility and Permeability: Two Rate-limiting Barriers to Oral Drug Absorption. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 156-161.	2.5	72
136	Exploring the Role of Different Drug Transport Routes in Permeability Screening. Journal of Medicinal Chemistry, 2005, 48, 604-613.	6.4	134
137	Computational models to predict aqueous drug solubility, permeability and intestinal absorption. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 613-627.	3.3	29
138	Accuracy of calculated pH-dependent aqueous drug solubility. European Journal of Pharmaceutical Sciences, 2004, 22, 387-398.	4.0	182
139	Global and Local Computational Models for Aqueous Solubility Prediction of Drug-Like Molecules. Journal of Chemical Information and Computer Sciences, 2004, 44, 1477-1488.	2.8	101
140	Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. Journal of Chemical Information and Computer Sciences, 2003, 43, 1177-1185.	2.8	96
141	Absorption Classification of Oral Drugs Based on Molecular Surface Properties. Journal of Medicinal Chemistry, 2003, 46, 558-570.	6.4	251
142	Theoretical Predictions of Drug Absorption in Drug Discovery and Development. Clinical Pharmacokinetics, 2002, 41, 877-899.	3.5	60
143	Experimental and computational screening models for prediction of aqueous drug solubility. Pharmaceutical Research, 2002, 19, 182-188.	3.5	153