## Ramon Munoz-Chapuli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666253/publications.pdf

Version: 2024-02-01

93 papers 4,985 citations

94381 37 h-index 98753 67 g-index

96 all docs 96 docs citations

96 times ranked 5583 citing authors

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Insulin-like Growth Factor Signalling Pathway in Cardiac Development and Regeneration. International Journal of Molecular Sciences, 2022, 23, 234.                                            | 1.8  | 19        |
| 2  | Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Frontiers in Cell and Developmental Biology, 2021, 9, 683861. | 1.8  | 8         |
| 3  | GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight, 2021, 6, .                                                                                           | 2.3  | 19        |
| 4  | Contribution of a GATA4-Expressing Hematopoietic Progenitor Lineage to the Adult Mouse Endothelium. Cells, 2020, 9, 1257.                                                                         | 1.8  | 1         |
| 5  | Embryonic circulating endothelial progenitor cells. Angiogenesis, 2020, 23, 531-541.                                                                                                              | 3.7  | 16        |
| 6  | Epicardial cell lineages and the origin of the coronary endothelium. FASEB Journal, 2020, 34, 5223-5239.                                                                                          | 0.2  | 22        |
| 7  | Retinoids in Stellate Cells: Development, Repair, and Regeneration. Journal of Developmental Biology, 2019, 7, 10.                                                                                | 0.9  | 13        |
| 8  | The Wilms' tumor suppressor gene regulates pancreas homeostasis and repair. PLoS Genetics, 2019, 15, e1007971.                                                                                    | 1.5  | 10        |
| 9  | Mesothelial-mesenchymal transitions in embryogenesis. Seminars in Cell and Developmental Biology, 2019, 92, 37-44.                                                                                | 2.3  | 10        |
| 10 | Comparative developmental biology of the cardiac inflow tract. Journal of Molecular and Cellular Cardiology, 2018, 116, 155-164.                                                                  | 0.9  | 11        |
| 11 | Role of the Wilms' tumor suppressor gene <i>Wt1</i> in pancreatic development. Developmental Dynamics, 2018, 247, 924-933.                                                                        | 0.8  | 13        |
| 12 | A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica, 2017, 102, 647-655.                       | 1.7  | 8         |
| 13 | A right-handed signalling pathway drives heart looping in vertebrates. Nature, 2017, 549, 86-90.                                                                                                  | 13.7 | 85        |
| 14 | Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients, 2017, 9, 159.                                                                                      | 1.7  | 88        |
| 15 | C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis. Oncotarget, 2017, 8, 110994-111011.                          | 0.8  | 24        |
| 16 | Coelomic epitheliumâ€derived cells in visceral morphogenesis. Developmental Dynamics, 2016, 245, 307-322.                                                                                         | 0.8  | 40        |
| 17 | The Role of WT1 in Embryonic Development and Normal Organ Homeostasis. Methods in Molecular Biology, 2016, 1467, 23-39.                                                                           | 0.4  | 36        |
| 18 | Myc overexpression enhances epicardial contribution to the developing heart and promotes extensive expansion of the cardiomyocyte population. Scientific Reports, 2016, 6, 35366.                 | 1.6  | 18        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio–venous connections. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 656-661. | 3.3 | 99        |
| 20 | Tools and Techniques for Wt1-Based Lineage Tracing. Methods in Molecular Biology, 2016, 1467, 41-59.                                                                                                                        | 0.4 | 7         |
| 21 | Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice. ELife, 2016, 5, .                                                                                          | 2.8 | 41        |
| 22 | The proepicardium keeps a potential for glomerular marker expression which supports its evolutionary origin from the pronephros. Evolution & Development, 2015, 17, 224-230.                                                | 1.1 | 6         |
| 23 | Signaling by Retinoic Acid in Embryonic and Adult Hematopoiesis. Journal of Developmental Biology, 2014, 2, 18-33.                                                                                                          | 0.9 | 3         |
| 24 | Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source.<br>Nature Cell Biology, 2014, 16, 367-375.                                                                                 | 4.6 | 422       |
| 25 | GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology, 2014, 59, 2358-2370.                                                                                                           | 3.6 | 53        |
| 26 | P314Ontogenetic contribution of mesodermal pro/epicardial cell lineages to coronary endothelium. Cardiovascular Research, 2014, 103, S57.2-S57.                                                                             | 1.8 | 0         |
| 27 | Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochimica Et<br>Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2204-2215.                                                | 1.8 | 29        |
| 28 | The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Developmental Biology, 2013, 375, 182-192.                                                                                                    | 0.9 | 52        |
| 29 | Wt1-expressing progenitors contribute to multiple tissues in the developing lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L322-L332.                                            | 1.3 | 59        |
| 30 | Cells Derived from the Coelomic Epithelium Contribute to Multiple Gastrointestinal Tissues in Mouse Embryos. PLoS ONE, 2013, 8, e55890.                                                                                     | 1.1 | 37        |
| 31 | Evolutionary Origin of the Proepicardium. Journal of Developmental Biology, 2013, 1, 3-19.                                                                                                                                  | 0.9 | 6         |
| 32 | Developmental and tumoral vascularization is regulated by G proteinââ,¬â€œcoupled receptor kinase 2. Journal of Clinical Investigation, 2013, 123, 4714-4730.                                                               | 3.9 | 52        |
| 33 | Poster session 2. Cardiovascular Research, 2012, 93, S52-S87.                                                                                                                                                               | 1.8 | 3         |
| 34 | Peritoneal repairing cells: a type of bone marrow derived progenitor cells involved in mesothelial regeneration. Journal of Cellular and Molecular Medicine, 2011, 15, 1200-1209.                                           | 1.6 | 17        |
| 35 | Evolution of angiogenesis. International Journal of Developmental Biology, 2011, 55, 345-351.                                                                                                                               | 0.3 | 45        |
| 36 | Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development (Cambridge), 2011, 138, 1093-1097.                                                                  | 1.2 | 110       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Do Not Say Ever Never More: The Ins and Outs of Antiangiogenic Therapies. Current Pharmaceutical Design, 2010, 16, 3932-3957.                                                                                                              | 0.9 | 43        |
| 38 | Cardiogenesis: An Embryological Perspective. Journal of Cardiovascular Translational Research, 2010, 3, 37-48.                                                                                                                             | 1.1 | 15        |
| 39 | The embryonic epicardium: an essential element of cardiac development. Journal of Cellular and Molecular Medicine, 2010, 14, 2066-2072.                                                                                                    | 1.6 | 47        |
| 40 | Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nature Genetics, 2010, 42, 89-93.                                                                                    | 9.4 | 315       |
| 41 | Origin of the Vertebrate Endothelial Cell Lineage. , 2010, , 465-486.                                                                                                                                                                      |     | 3         |
| 42 | Molecular evolution of nitric oxide synthases in metazoans. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2010, 5, 295-301.                                                                                     | 0.4 | 27        |
| 43 | Epicardial cell transformation. FASEB Journal, 2010, 24, 62.1.                                                                                                                                                                             | 0.2 | O         |
| 44 | Building the vertebrate heart - an evolutionary approach to cardiac development. International Journal of Developmental Biology, 2009, 53, 1427-1443.                                                                                      | 0.3 | 44        |
| 45 | 03-P107 EMT regulated by Wt1 through transcriptional control of Snail-1 and E-cadherin is required for generation of progenitor cells in epicardium and ES cells. Mechanisms of Development, 2009, 126, S98-S99.                           | 1.7 | O         |
| 46 | Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evolution & Development, 2008, 10, 210-216.                                               | 1.1 | 37        |
| 47 | DTD, an antiâ€inflammatory ditriazine, inhibits angiogenesis ⟨i⟩in vitro⟨ i⟩ and ⟨i⟩in vivo⟨ i⟩. Journal of Cellular and Molecular Medicine, 2008, 12, 1211-1219.                                                                          | 1.6 | 2         |
| 48 | IB05204, a dichloropyridodithienotriazine, inhibits angiogenesis <i>in vitro</i> and <i>in vivo</i> Molecular Cancer Therapeutics, 2007, 6, 2675-2685.                                                                                     | 1.9 | 18        |
| 49 | Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Developmental Biology, 2007, 312, 157-170.                                                                                            | 0.9 | 112       |
| 50 | A simple technique of image analysis for specific nuclear immunolocalization of proteins. Journal of Microscopy, 2007, 225, 96-99.                                                                                                         | 0.8 | 24        |
| 51 | Challenges of antiangiogenic cancer therapy: trials and errors, and renewed hope. Journal of Cellular and Molecular Medicine, 2007, 11, 374-382.                                                                                           | 1.6 | 49        |
| 52 | In vitro self-assembly of proepicardial cell aggregates: An embryonic vasculogenic model for vascular tissue engineering. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 700-713. | 2.0 | 25        |
| 53 | In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Developmental Dynamics, 2006, 235, 1014-1026.                                                                                     | 0.8 | 89        |
| 54 | Anti-angiogenic drugs: from bench to clinical trials. Medicinal Research Reviews, 2006, 26, 483-530.                                                                                                                                       | 5.0 | 146       |

| #  | Article                                                                                                                                                                                                                                                        | IF  | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The origin of the endothelial cells: an evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evolution & Development, 2005, 7, 351-358.                                                                                     | 1.1 | 83        |
| 56 | Angiogenesis and signal transduction in endothelial cells. Cellular and Molecular Life Sciences, 2004, 61, 2224-43.                                                                                                                                            | 2.4 | 274       |
| 57 | Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Developmental Dynamics, 2004, 229, 465-474.                                                                                                                                     | 0.8 | 63        |
| 58 | Study of puupehenone and related compounds as inhibitors of angiogenesis. International Journal of Cancer, 2004, 110, 31-38.                                                                                                                                   | 2.3 | 57        |
| 59 | A modified Chorioallantoic Membrane Assay Allows for Specific Detection of Endothelial Apoptosis<br>Induced by Antiangiogenic Substances. Angiogenesis, 2003, 6, 251-254.                                                                                      | 3.7 | 20        |
| 60 | Development of the coronary arteries in a murine model of transposition of great arteries. Journal of Molecular and Cellular Cardiology, 2003, 35, 795-802.                                                                                                    | 0.9 | 47        |
| 61 | Antiangiogenic activity of aeroplysininâ€1, a brominated compound isolated from a marine sponge. FASEB Journal, 2002, 16, 1-27.                                                                                                                                | 0.2 | 95        |
| 62 | Hyperplastic Conotruncal Endocardial Cushions and Transposition of Great Arteries in Perlecan-Null Mice. Circulation Research, 2002, 91, 158-164.                                                                                                              | 2.0 | 155       |
| 63 | Experimental Studies on the Spatiotemporal Expression of WT1 and RALDH2 in the Embryonic Avian Heart: A Model for the Regulation of Myocardial and Valvuloseptal Development by Epicardially Derived Cells (EPDCs). Developmental Biology, 2002, 247, 307-326. | 0.9 | 209       |
| 64 | Epithelial-mesenchymal transitions: A mesodermal cell strategy for evolutive innovation in Metazoans. The Anatomical Record, 2002, 268, 343-351.                                                                                                               | 2.3 | 86        |
| 65 | Cellular precursors of the coronary arteries. Texas Heart Institute Journal, 2002, 29, 243-9.                                                                                                                                                                  | 0.1 | 44        |
| 66 | Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 2002, 46, 1005-13.                                                                                                          | 0.3 | 200       |
| 67 | The Origin, Formation and Developmental Significance of the Epicardium: A Review. Cells Tissues Organs, 2001, 169, 89-103.                                                                                                                                     | 1.3 | 278       |
| 68 | Localization of the Wilms' tumour protein WT1 in avian embryos. Cell and Tissue Research, 2001, 303, 173-186.                                                                                                                                                  | 1.5 | 75        |
| 69 | Immunolocalization of the transcription factor Slug in the developing avian heart. Anatomy and Embryology, 2000, 201, 103-109.                                                                                                                                 | 1.5 | 39        |
| 70 | Two genes encoding distinct cytosolic glutamine synthetases are closely linked in the pine genome. FEBS Letters, 2000, 477, 237-243.                                                                                                                           | 1.3 | 32        |
| 71 | Epithelial-mesenchymal transitions in the developing heart of the dogfish (Scyliorhinus canicula). A scanning electron microscopic study. Acta Zoologica, 1999, 80, 231-239.                                                                                   | 0.6 | О         |
| 72 | Immunohistochemical evidence for a mesothelial contribution to the ventral wall of the avian aorta. The Histochemical Journal, 1999, 31, 771-779.                                                                                                              | 0.6 | 17        |

| #          | Article                                                                                                                                                                                                                     | IF  | Citations |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73         | Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation, 1999, 64, 133-141.                                                      | 1.0 | 50        |
| 74         | Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation, 1999, 64, 133.                                                          | 1.0 | 46        |
| <b>7</b> 5 | Immunolocalization of the vascular endothelial growth factor receptor-2 in the subepicardial mesenchyme of hamster embryos: identification of the coronary vessel precursors. The Histochemical Journal, 1998, 30, 627-634. | 0.6 | 22        |
| 76         | Immunohistochemical Study of the Origin of the Subepicardial Mesenchyme in the Dogfish ( <i>Scyliorhinus canicula</i> ). Acta Zoologica, 1998, 79, 335-342.                                                                 | 0.6 | 5         |
| 77         | Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Anatomy and Embryology, 1998, 198, 307-315.                                    | 1.5 | 33        |
| 78         | The Origin of the Subepicardial Mesenchyme in the Avian Embryo: An Immunohistochemical and Quail–Chick Chimera Study. Developmental Biology, 1998, 200, 57-68.                                                              | 0.9 | 151       |
| 79         | Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos., 1997, 210, 96-105.                                                                                                  |     | 112       |
| 80         | Anatomy and development of the sinoatrial valves in the dogfish (Scyliorhinus canicula)., 1997, 248, 224-232.                                                                                                               |     | 21        |
| 81         | A Reaction-Diffusion Model can Account for the Anatomical Pattern of the Cardiac Conal Valves in Fish. Journal of Theoretical Biology, 1997, 185, 233-240.                                                                  | 0.8 | 5         |
| 82         | Epilogue: Comparative cardiovascular biology of lower vertebrates. The Journal of Experimental Zoology, 1996, 275, 249-251.                                                                                                 | 1.4 | 1         |
| 83         | Development of the subepicardial mesenchyme and the early cardiac vessels in the dogfish (Scyliorhinus canicula). The Journal of Experimental Zoology, 1996, 275, 95-111.                                                   | 1.4 | 27        |
| 84         | Fusion of valve cushions as a key factor in the formation of congenital bicuspid aortic valves in Syrian hamsters., 1996, 244, 490-498.                                                                                     |     | 74        |
| 85         | Anatomy and histology of the cardiac conal valves of the adult dogfish (Scyliorhinus canicula). The Anatomical Record, 1995, 241, 496-504.                                                                                  | 2.3 | 19        |
| 86         | The Effects of Calcitonin on Serum Calcium Levels in Immature Brown Trout, Salmo trutta. General and Comparative Endocrinology, 1995, 97, 42-48.                                                                            | 0.8 | 24        |
| 87         | Development of the coronary arteries and cardiac veins in the dogfish (Scyliorhinus canicula). The Anatomical Record, 1993, 235, 436-442.                                                                                   | 2.3 | 22        |
| 88         | Coronary arteriosclerosis in dogfish (Scyliorhinus canicula). An assessment of some potential risk factors Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1993, 13, 876-885.                               | 3.8 | 13        |
| 89         | Intra and interspecific association of large pelagic fishes inferred from catch data of surface longline. Environmental Biology of Fishes, 1992, 35, 95-103.                                                                | 0.4 | 4         |
| 90         | Anatomical studies of the coronary system in elasmobranchs: II. Coronary arteries in hexanchoid, squaloid, and carcharhinoid sharks. The Anatomical Record, 1992, 233, 429-439.                                             | 2.3 | 12        |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Coronary myointimal lesions in the dogfish shark Scyliorhinus canicula. Journal of Comparative Pathology, 1991, 105, 387-395.                                      | 0.1 | 6         |
| 92 | Anatomical studies of the coronary system in elasmobranchs: I. Coronary arteries in lamnoid sharks. American Journal of Anatomy, 1990, 187, 303-310.               | 0.9 | 21        |
| 93 | Morphological comparison of Squalus blainvillei and S. megalops in the Eastern Atlantic, with notes on the genus. Japanese Journal of Ichthyology, 1989, 36, 6-21. | 0.1 | 18        |