Dennis Yc Leung

List of Publications by Citations

Source: https://exaly.com/author-pdf/6662509/dennis-yc-leung-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 284 24,073 150 h-index g-index citations papers 8.2 27,847 297 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
284	A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. <i>Renewable and Sustainable Energy Reviews</i> , 2007 , 11, 401-425	16.2	3189
283	An overview of current status of carbon dioxide capture and storage technologies. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 39, 426-443	16.2	1633
282	A review on biodiesel production using catalyzed transesterification. <i>Applied Energy</i> , 2010 , 87, 1083-10	95 0.7	1626
281	A review on reforming bio-ethanol for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 3238-3247	6.7	941
280	A review on the generation, determination and mitigation of urban heat island. <i>Journal of Environmental Sciences</i> , 2008 , 20, 120-8	6.4	862
279	An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87, 461-472	7.2	858
278	Evidence of airborne transmission of the severe acute respiratory syndrome virus. <i>New England Journal of Medicine</i> , 2004 , 350, 1731-9	59.2	826
277	Transesterification of neat and used frying oil: Optimization for biodiesel production. <i>Fuel Processing Technology</i> , 2006 , 87, 883-890	7.2	661
276	Low temperature catalytic oxidation of volatile organic compounds: a review. <i>Catalysis Science and Technology</i> , 2015 , 5, 2649-2669	5.5	463
275	Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 2337-2354	6.7	429
274	Wind energy development and its environmental impact: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 1031-1039	16.2	368
273	A review on hydrogen production using aluminum and aluminum alloys. <i>Renewable and Sustainable Energy Reviews</i> , 2009 , 13, 845-853	16.2	352
272	Hydrogen production over titania-based photocatalysts. <i>ChemSusChem</i> , 2010 , 3, 681-94	8.3	349
271	Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 6484-6491	6.7	264
270	Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. <i>Energy Conversion and Management</i> , 2008 , 49, 2748-2756	10.6	259
269	Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles. <i>ACS Catalysis</i> , 2011 , 1, 348-354	13.1	233
268	Optimization of biodiesel production from camelina oil using orthogonal experiment. <i>Applied Energy</i> , 2011 , 88, 3615-3624	10.7	217

(2007-2009)

267	A review of biomass-derived fuel processors for fuel cell systems. <i>Renewable and Sustainable Energy Reviews</i> , 2009 , 13, 1301-1313	16.2	216
266	Parametric study of solid oxide fuel cell performance. <i>Energy Conversion and Management</i> , 2007 , 48, 1525-1535	10.6	209
265	A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 448-458	21.8	200
264	Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. <i>Journal of Catalysis</i> , 2011 , 280, 60-67	7.3	197
263	Potential of renewable hydrogen production for energy supply in Hong Kong. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 1401-1412	6.7	192
262	Degradation of biodiesel under different storage conditions. <i>Bioresource Technology</i> , 2006 , 97, 250-6	11	162
261	Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemElectroChem, 2014, 1, 836-849	4.3	151
2 60	A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 65, 961-977	16.2	151
259	A review on the energy production, consumption, and prospect of renewable energy in China. <i>Renewable and Sustainable Energy Reviews</i> , 2003 , 7, 453-468	16.2	144
258	Photocatalytic performance of tetragonal and cubic #n2S3 for the water splitting under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2010 , 95, 393-399	21.8	141
257	Kinetic study of scrap tyre pyrolysis and combustion. <i>Journal of Analytical and Applied Pyrolysis</i> , 1998 , 45, 153-169	6	141
256	Byproducts and pathways of toluene destruction via plasma-catalysis. <i>Journal of Molecular Catalysis A</i> , 2011 , 336, 87-93		140
255	An investigation of urban heat island intensity (UHII) as an indicator of urban heating. <i>Atmospheric Research</i> , 2009 , 94, 491-500	5.4	140
254	Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9647		133
253	Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. <i>Environment International</i> , 2019 , 125, 200-228	12.9	127
252	A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 171-180	21.8	126
251	Parametric study of solid oxide steam electrolyzer for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 2305-2313	6.7	124
250	Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. <i>Atmospheric Environment</i> , 2007 , 41, 9030-9049	5.3	123

249	Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 4648-4660	6.7	122
248	A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. <i>Journal of Power Sources</i> , 2006 , 163, 460-466	8.9	119
247	Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature. <i>Chemical Engineering Journal</i> , 2018 , 334, 2050-2057	14.7	119
246	Outdoor-indoor air pollution in urban environment: challenges and opportunity. <i>Frontiers in Environmental Science</i> , 2015 , 2,	4.8	116
245	Simultaneous removal of tetracycline and Cr(VI) by a novel three-dimensional AgI/BiVO4 p-n junction photocatalyst and insight into the photocatalytic mechanism. <i>Chemical Engineering Journal</i> , 2019 , 369, 716-725	14.7	115
244	Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. <i>Building and Environment</i> , 2010 , 45, 176-188	6.5	110
243	Characteristics of air exchange in a street canyon with ground heating. <i>Atmospheric Environment</i> , 2006 , 40, 6396-6409	5.3	107
242	A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 75, 775-795	16.2	106
241	Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 67-72	21.8	105
240	An analytical study of the porosity effect on dye-sensitized solar cell performance. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 1331-1344	6.4	104
239	Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. <i>Fuel Processing Technology</i> , 2002 , 79, 141-155	7.2	103
238	Mesoporous TiO 2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. <i>Chemical Engineering Journal</i> , 2017 , 327, 490-499	14.7	102
237	Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. <i>Journal of Power Sources</i> , 2007 , 168, 369-378	8.9	100
236	Numerical investigation of pollutant transport characteristics inside deep urban street canyons. <i>Atmospheric Environment</i> , 2009 , 43, 2410-2418	5.3	89
235	A review on the development and commercialization of biomass gasification technologies in China. <i>Renewable and Sustainable Energy Reviews</i> , 2004 , 8, 565-580	16.2	89
234	Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor. <i>Chemical Engineering Journal</i> , 2013 , 230, 73-79	14.7	85
233	Large-Eddy Simulation of Flow and Pollutant Dispersion in High-Aspect-Ratio Urban Street Canyons with Wall Model. <i>Boundary-Layer Meteorology</i> , 2008 , 129, 249-268	3.4	8o
232	Highly dispersed and active supported Pt nanoparticles for gaseous formaldehyde oxidation: Influence of particle size. <i>Chemical Engineering Journal</i> , 2014 , 252, 320-326	14.7	79

231	Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 870-878	21.8	79	
230	Optimization of Exhaust Emissions of a Diesel Engine Fuelled with Biodiesel. <i>Energy & amp; Fuels</i> , 2006 , 20, 1015-1023	4.1	79	
229	Ammonia-fed solid oxide fuel cells for power generation review. <i>International Journal of Energy Research</i> , 2009 , 33, 943-959	4.5	76	
228	Enhanced Performance and Conversion Pathway for Catalytic Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited Three-Dimensional Ordered Mesoporous MnO. <i>Environmental Science & Enpironmental Science</i>	10.3	76	
227	Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. <i>Applied Energy</i> , 2013 , 102, 427-431	10.7	73	
226	Physical Modeling of Flow Field inside Urban Street Canyons. <i>Journal of Applied Meteorology and Climatology</i> , 2008 , 47, 2058-2067	2.7	73	
225	Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism. <i>Applied Catalysis B: Environmental</i> , 2016 , 186, 62-68	21.8	72	
224	Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios. <i>Journal of Applied Meteorology and Climatology</i> , 2004 , 43, 1410	-1424	72	
223	An overview on biogas generation from anaerobic digestion of food waste. <i>International Journal of Green Energy</i> , 2016 , 13, 119-131	3	71	
222	Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production. <i>Electrochimica Acta</i> , 2007 , 52, 6707-6718	6.7	71	
221	Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium(VI). <i>Chemical Engineering Journal</i> , 2019 , 361, 1352-136	2 ^{14.7}	70	
220	Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. <i>Applied Surface Science</i> , 2016 , 362, 490-497	6.7	69	
219	Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating. <i>Boundary-Layer Meteorology</i> , 2010 , 137, 187-204	3.4	69	
218	Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. <i>Journal of Power Sources</i> , 2008 , 183, 682-686	8.9	68	
217	Mathematical Modelling of Proton-Conducting Solid Oxide Fuel Cells and Comparison with Oxygen-Ion-Conducting Counterpart. <i>Fuel Cells</i> , 2007 , 7, 269-278	2.9	67	
216	Characteristics of the Synthesis of Methanol Using Biomass-Derived Syngas. <i>Energy & amp; Fuels</i> , 2005 , 19, 305-310	4.1	67	
215	Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 78-87	21.8	67	
214	UV/H 2 O 2 : An efficient aqueous advanced oxidation process for VOCs removal. <i>Chemical Engineering Journal</i> , 2017 , 324, 44-50	14.7	66	

213	On the correlation of air and pollutant exchange for street canyons in combined wind-buoyancy-driven flow. <i>Atmospheric Environment</i> , 2009 , 43, 3682-3690	5.3	66
212	Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. <i>Energy Conversion and Management</i> , 2009 , 50, 268-278	10.6	66
211	Graphene materials in green energy applications: Recent development and future perspective. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 120, 109656	16.2	66
210	Fluidized-bed gasification of waste tire powders. Fuel Processing Technology, 2003, 84, 175-196	7.2	65
209	An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production. <i>Chemical Engineering and Technology</i> , 2006 , 29, 636-642	2	64
208	Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression. <i>Chemical Engineering Journal</i> , 2015 , 264, 24-31	14.7	63
207	Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene. <i>Chemical Engineering Journal</i> , 2018 , 341, 383-391	14.7	63
206	Solar photocatalytic degradation of gaseous formaldehyde by solgel TiO2 thin film for enhancement of indoor air quality. <i>Solar Energy</i> , 2004 , 77, 129-135	6.8	63
205	Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals. <i>Chemical Engineering Journal</i> , 2015 , 259, 534-541	14.7	61
204	Computational formulation for the evaluation of street canyon ventilation and pollutant removal performance. <i>Atmospheric Environment</i> , 2008 , 42, 9041-9051	5.3	60
203	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17420-17425	13	59
202	Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5765-5772	6.7	59
201	g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. <i>Applied Surface Science</i> , 2019 , 467-468, 658-665	6.7	59
200	Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals. <i>Chemical Engineering Journal</i> , 2019 , 356, 632-640	14.7	57
199	Modeling of methane fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte. <i>Journal of Power Sources</i> , 2008 , 183, 133-142	8.9	54
198	Effects of Urban Vegetation on Urban Air Quality. Landscape Research, 2011, 36, 173-188	1.4	53
197	Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell. <i>Journal of Power Sources</i> , 2017 , 349, 75-83	8.9	52
196	Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation. <i>Catalysis Today</i> , 2013 , 201, 189-194	5.3	52

(2017-2007)

195	Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 54-61	6.4	52
194	Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation. <i>Catalysis Today</i> , 2011 , 175, 310-315	5.3	51
193	Development and characteristics of a membraneless microfluidic fuel cell array. <i>Electrochimica Acta</i> , 2014 , 135, 467-477	6.7	50
192	Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. <i>Applied Energy</i> , 2018 , 217, 258-265	10.7	49
191	Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. <i>Energy</i> , 2017 , 120, 1-11	7.9	48
190	Photocatalytic reforming of glucose over La doped alkali tantalate photocatalysts for H2 production. <i>Catalysis Communications</i> , 2010 , 12, 184-187	3.2	48
189	Pollutant dispersion in urban street canopies. Atmospheric Environment, 2001, 35, 2033-2043	5.3	48
188	Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior. <i>Journal of Power Sources</i> , 2011 , 196, 9391-9397	8.9	47
187	Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 4040-4047	6.7	47
186	Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. <i>Biotechnology for Biofuels</i> , 2012 , 5, 19	7.8	46
185	Energy analysis of hydrogen and electricity production from aluminum-based processes. <i>Applied Energy</i> , 2012 , 90, 100-105	10.7	46
184	Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte. <i>Journal of Power Sources</i> , 2008 , 177, 369-375	8.9	46
183	Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell. <i>Canadian Journal of Chemical Engineering</i> , 2008 , 86, 35-42	2.3	46
182	Photocatalytic reforming of C3-polyols for H2 production: Part (I). Role of their OH groups. <i>Applied Catalysis B: Environmental</i> , 2011 , 106, 681-688	21.8	44
181	A high performance dual electrolyte microfluidic reactor for the utilization of CO2. <i>Applied Energy</i> , 2017 , 194, 549-559	10.7	42
180	Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. <i>Chemical Engineering Journal</i> , 2021 , 405, 126555	14.7	42
179	Catalytic oxidation of VOCs over Mn/TiO/activated carbon under 185 nm VUV irradiation. <i>Chemosphere</i> , 2018 , 208, 550-558	8.4	41
178	A mixed-pH dual-electrolyte microfluidic aluminumlir cell with high performance. <i>Applied Energy</i> , 2017 , 185, 1303-1308	10.7	40

177	Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects. <i>Applied Energy</i> , 2012 , 90, 80-86	10.7	40
176	Photocatalytic reforming of C3-polyols for H2 production. <i>Applied Catalysis B: Environmental</i> , 2011 , 106, 689-696	21.8	40
175	Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. <i>Journal of Hazardous Materials</i> , 2019 , 364, 770-779	12.8	40
174	Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte. <i>Journal of Power Sources</i> , 2008 , 183, 687-692	8.9	38
173	A Review on Ozone Evolution and Its Relationship with Boundary Layer Characteristics in Urban Environments. <i>Water, Air, and Soil Pollution</i> , 2011 , 214, 13-36	2.6	37
172	Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%. <i>Applied Energy</i> , 2015 , 160, 930-936	10.7	35
171	An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. <i>Journal of Power Sources</i> , 2008 , 185, 233-240	8.9	35
170	Innovative paper-based Al-air batteries as a low-cost and green energy technology for the miniwatt market. <i>Journal of Power Sources</i> , 2019 , 414, 278-282	8.9	35
169	A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency. <i>Applied Energy</i> , 2015 , 147, 456-465	10.7	34
168	A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization. <i>Renewable Energy</i> , 2016 , 95, 277-285	8.1	33
167	Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production. <i>Applied Energy</i> , 2013 , 102, 1057-1062	10.7	33
166	A review on the removal of nitrogen oxides from polluted flow by bioreactors. <i>Environmental Reviews</i> , 2010 , 18, 175-189	4.5	33
165	Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons. <i>Journal of Environmental Sciences</i> , 2012 , 24, 2091-103	6.4	32
164	Laminar flow-based fuel cell working under critical conditions: The effect of parasitic current. <i>Applied Energy</i> , 2012 , 90, 87-93	10.7	32
163	Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9076-9086	6.7	32
162	Powering future body sensor network systems: A review of power sources. <i>Biosensors and Bioelectronics</i> , 2020 , 166, 112410	11.8	32
161	Intimately Contacted Ni2P on CdS Nanorods for Highly Efficient Photocatalytic H2 Evolution: New Phosphidation Route and the Interfacial Separation Mechanism of Charge Carriers. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119443	21.8	32
160	Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability. <i>Applied Energy</i> , 2019 , 251, 113342	10.7	31

(2018-2013)

159	Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?. <i>Applied Energy</i> , 2013 , 104, 400-407	10.7	31
158	Street-level concentrations of nitrogen dioxide and suspended particulate matter in Hong Kong. <i>Atmospheric Environment</i> , 1998 , 33, 1-11	5.3	31
157	Toluene degradation over Mn-TiO2/CeO2 composite catalyst under vacuum ultraviolet (VUV) irradiation. <i>Chemical Engineering Science</i> , 2019 , 195, 985-994	4.4	31
156	A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel. <i>Applied Energy</i> , 2016 , 184, 659-669	10.7	30
155	In-situ synthesis of heterojunction TiO2/MnO2 nanostructure with excellent performance in vacuum ultraviolet photocatalytic oxidation of toluene. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118034	21.8	30
154	Hydrodynamic focusing in microfluidic membraneless fuel cells: Breaking the trade-off between fuel utilization and current density. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11075-11084	6.7	30
153	On the mechanism of air pollutant re-entrainment in two-dimensional idealized street canyons. <i>Atmospheric Environment</i> , 2011 , 45, 4763-4769	5.3	30
152	Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong. <i>Atmospheric Environment</i> , 2010 , 44, 1456-1468	5.3	30
151	A dual fuel microfluidic fuel cell utilizing solar energy and methanol. <i>Journal of Power Sources</i> , 2019 , 409, 58-65	8.9	30
150	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122967	12.8	29
149	Enhanced photoelectrocatalytic hydrogen production via Bi/BiVO4 photoanode under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117954	21.8	29
148	Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study. <i>Applied Energy</i> , 2013 , 112, 1131-1137	10.7	29
147	Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation. <i>Chemical Engineering Journal</i> , 2007 , 129, 153-159	14.7	29
146	A flexible paper-based hydrogen fuel cell for small power applications. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 29680-29691	6.7	28
145	Novel Ag/p-AgBr/n-BiVO4 Plasmonic Heterojunction Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic Mechanism. <i>ACS Applied Energy Materials</i> , 2019 , 2, 694-7	764	28
144	Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 1524-1530	6.7	27
143	Vacuum ultraviolet (VUV)-based photocatalytic oxidation for toluene degradation over pure CeO2. <i>Chemical Engineering Science</i> , 2019 , 200, 203-213	4.4	26
142	Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. <i>Solid State Sciences</i> , 2018 , 75, 21-26	3.4	26

141	The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. <i>Solid State Sciences</i> , 2017 , 67, A1-A14	3.4	25
140	The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. <i>BMC Infectious Diseases</i> , 2020 , 20, 127	4	25
139	A Direct Ammonia Microfluidic Fuel Cell using NiCu Nanoparticles Supported on Carbon Nanotubes as an Electrocatalyst. <i>ChemSusChem</i> , 2018 , 11, 2889-2897	8.3	25
138	Abatement of Toluene in the Plasma-Driven Catalysis: Mechanism and Reaction Kinetics. <i>IEEE Transactions on Plasma Science</i> , 2011 , 39, 877-882	1.3	25
137	Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation. <i>Applied Energy</i> , 2017 , 204, 948-957	10.7	24
136	Synergistically catalytic oxidation of toluene over Mn modified g-CN/ZSM-4 under vacuum UV irradiation. <i>Journal of Hazardous Materials</i> , 2018 , 349, 91-100	12.8	24
135	A switchable pH-differential unitized regenerative fuel cell with high performance. <i>Journal of Power Sources</i> , 2016 , 314, 76-84	8.9	24
134	A computational study of bifunctional oxygen electrode in air-breathing reversible microfluidic fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9231-9241	6.7	24
133	Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation. <i>Kinetics and Catalysis</i> , 2012 , 53, 239-246	1.5	23
132	Energy and exergy analysis of microfluidic fuel cell. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 6526-6536	6.7	23
131	Impacts of environmental factors on urban heating. <i>Journal of Environmental Sciences</i> , 2010 , 22, 1903-9	6.4	23
130	Development of a Clean Biodiesel Fuel in Hong Kong Using Recycled Oil. <i>Water, Air, and Soil Pollution</i> , 2001 , 130, 277-282	2.6	23
129	Effect of guide wall on the potential of a solar chimney power plant. Renewable Energy, 2016, 96, 209-2	189.1	23
128	A facile VUV/H2O system without auxiliary substances for efficient degradation of gaseous toluene. <i>Chemical Engineering Journal</i> , 2018 , 334, 1422-1429	14.7	22
127	Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics. <i>Journal of Power Sources</i> , 2019 , 437, 226896	8.9	22
126	Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology. <i>Electrochimica Acta</i> , 2019 , 319, 947-957	6.7	22
125	Urban heat island and its effect on the cooling and heating demands in urban and suburban areas of Hong Kong. <i>Theoretical and Applied Climatology</i> , 2011 , 103, 441-450	3	22
124	Efficient MnOx/SiO2@AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature. <i>Applied Surface Science</i> , 2019 , 470, 439-447	6.7	22

123	Plasma-Driven Catalysis Process for Toluene Abatement: Effect of Water Vapor. <i>IEEE Transactions on Plasma Science</i> , 2011 , 39, 576-580	1.3	21
122	A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling. <i>Atmospheric Environment</i> , 2001 , 35, 5779-5788	5.3	21
121	Microfluidic fuel cells with different types of fuels: A prospective review. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 141, 110806	16.2	21
120	Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides. <i>Chemical Engineering Journal</i> , 2019 , 356, 673-679	14.7	21
119	Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process. <i>Chemical Engineering Journal</i> , 2020 , 386, 121025	14.7	21
118	A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. <i>Journal of Materials Science and Technology</i> , 2021 , 85, 18-29	9.1	21
117	Modeling of an air cathode for microfluidic fuel cells: Transport and polarization behaviors. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 14704-14718	6.7	20
116	An overview of emissions trading and its prospects in Hong Kong. <i>Environmental Science and Policy</i> , 2009 , 12, 92-101	6.2	20
115	Development of a finite element solution for the unsteady NavierBtokes equations using projection method and fractional-Escheme. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 190, 4301-4317	5.7	20
114	A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. <i>Chemical Engineering Journal</i> , 2021 , 409, 128185	14.7	20
113	A high-performance aluminum-feed microfluidic fuel cell stack. <i>Journal of Power Sources</i> , 2016 , 336, 42	78436	19
112	Chemical and transport behaviors in a microfluidic reformer with catalytic-support membrane for efficient hydrogen production and purification. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 2614	1-2 6 22	19
111	On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation. <i>Atmospheric Environment</i> , 2005 ,	5.3	19
110	Catalytic ozonation of VOCs at low temperature: A comprehensive review. <i>Journal of Hazardous Materials</i> , 2022 , 422, 126847	12.8	19
109	Boosting the performance of formic acid microfluidic fuel cell: Oxygen annealing enhanced Pd@graphene electrocatalyst. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 10249-10254	6.7	18
108	Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study. <i>Journal of Power Sources</i> , 2008 , 183, 668-673	8.9	18
107	Greenhouse gas emissions in Hong Kong. Atmospheric Environment, 2000, 34, 4487-4498	5.3	18
106	Numerical investigation and optimization of vapor-feed microfluidic fuel cells with high fuel utilization. <i>Electrochimica Acta</i> , 2018 , 261, 127-136	6.7	17

105	Theoretical GraetzDamkEler modeling of an air-breathing microfluidic fuel cell. <i>Journal of Power Sources</i> , 2013 , 231, 1-5	8.9	17
104	Modeling of Parasitic Hydrogen Evolution Effects in an AluminumAir Cell\(\Pi\)Energy & Fuels, 2010 , 24, 3748-3753	4.1	17
103	Numerical study on the ozone formation inside street canyons using a chemistry box model. Journal of Environmental Sciences, 2008, 20, 832-7	6.4	17
102	Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst. <i>Chemosphere</i> , 2019 , 227, 401-408	8.4	16
101	Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream. <i>Chemical Engineering Journal</i> , 2011 , 171, 216-223	14.7	16
100	Printing Al-air batteries on paper for powering disposable printed electronics. <i>Journal of Power Sources</i> , 2020 , 450, 227685	8.9	16
99	Recent Development of VUV-Based Processes for Air Pollutant Degradation. <i>Frontiers in Environmental Science</i> , 2016 , 4,	4.8	16
98	Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem. <i>Electrochimica Acta</i> , 2016 , 222, 312-322	6.7	15
97	Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation. <i>Chemical Engineering Science</i> , 2020 , 211, 115266	4.4	15
96	Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-CN/SnS heterojunction photocatalysts with excellent photocatalytic performances. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123711	12.8	15
95	Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124539	12.8	15
94	High-Performance Aqueous NaIn Hybrid Ion Battery Boosted by Water-In-GellElectrolyte. <i>Advanced Functional Materials</i> , 2021 , 31, 2008783	15.6	15
93	Fluorinated TiO2 coupling with I MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. <i>Applied Catalysis B: Environmental</i> , 2021 , 280, 119388	21.8	14
92	Nitric oxide removal by wastewater bacteria in a biotrickling filter. <i>Journal of Environmental Sciences</i> , 2014 , 26, 555-65	6.4	13
91	Removal of Toluene Using UV-Irradiated and Nonthermal Plasma D riven Photocatalyst System. <i>Journal of Environmental Engineering, ASCE</i> , 2010 , 136, 1231-1236	2	13
90	Fluid dynamics and heat transfer in cold water thawing. <i>Journal of Food Engineering</i> , 2007 , 78, 1221-123	276	13
89	Numerical Study on Flow over Buildings in Street Canyon. <i>Journal of Environmental Engineering, ASCE</i> , 2001 , 127, 369-376	2	13
88	Modelling of Motor Vehicle Fuel Consumption and Emissions Using a Power-Based Model. <i>Environmental Monitoring and Assessment</i> , 2000 , 65, 21-29	3.1	13

(2018-2019)

87	BTZ-copolymer loaded graphene aerogel as new type Green and metal-free visible light photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 50-63	21.8	13
86	TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): enhancement on photoelectrochemical performance. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	12
85	Carbon doped ultra-small TiO2 coated on carbon cloth for efficient photocatalytic toluene degradation under visible LED light irradiation. <i>Applied Surface Science</i> , 2020 , 527, 146780	6.7	12
84	Computational fluid dynamics simulation of the wind flow over an airport terminal building. <i>Journal of Zhejiang University: Science A</i> , 2010 , 11, 389-401	2.1	12
83	Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food. Journal Physics D: Applied Physics, 2005 , 38, 477-482	3	12
82	Flexible direct formate paper fuel cells with high performance and great durability. <i>Journal of Power Sources</i> , 2021 , 490, 229526	8.9	12
81	Mathematical Modelling of the Performance of a Solar Chimney Power Plant with Divergent Chimneys. <i>Energy Procedia</i> , 2017 , 110, 440-445	2.3	11
80	GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography. <i>Frontiers of Chemical Science and Engineering</i> , 2019 , 13, 736-743	4.5	11
79	Development of a scalable finite element solution to the NavierBtokes equations. <i>Computational Mechanics</i> , 2003 , 32, 185-198	4	11
78	Improved estimators for the standard deviations of horizontal wind fluctuations. <i>Atmospheric Environment</i> , 1996 , 30, 2457-2461	5-3	11
77	Effect of Divergent Chimneys on the Performance of a Solar Chimney Power Plant. <i>Energy Procedia</i> , 2017 , 105, 7-13	2.3	10
76	A telescopic divergent chimney for power generation based on forced air movement: Principle and theoretical formulation. <i>Applied Energy</i> , 2014 , 136, 873-880	10.7	10
75	A Theoretical Study on Photocatalytic Fuel Cell. <i>Energy Procedia</i> , 2014 , 61, 246-249	2.3	10
74	On the comparison of the ventilation performance of street canyons of different aspect ratios and Richardson number. <i>Building Simulation</i> , 2009 , 2, 53-61	3.9	10
73	Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123839	12.8	10
72	Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design. <i>Energy and Environmental Science</i> , 2021 , 14, 2549-2576	35.4	10
71	Synergetic effect of vacuum ultraviolet photolysis and ozone catalytic oxidation for toluene degradation over MnO2-rGO composite catalyst. <i>Chemical Engineering Science</i> , 2021 , 231, 116288	4.4	10
70	Microfluidics-based pH-differential reactor for CO2 utilization: A mathematical study. <i>Applied Energy</i> , 2018 , 227, 525-532	10.7	9

69	A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte. <i>Journal of Power Sources</i> , 2016 , 336, 19-26	8.9	9
68	Ru@Pt core shell nanoparticle on graphene carbon nanotube composite aerogel as a flow through anode for direct methanol microfluidic fuel cell. <i>Energy Procedia</i> , 2017 , 142, 1522-1527	2.3	9
67	Parallel-plate solar photocatalytic reactor for air purification: Semi-empirical correlation, modeling, and optimization. <i>Solar Energy</i> , 2006 , 80, 949-955	6.8	9
66	Modeling and analysis of an aluminum water electrochemical generator for simultaneous production of electricity and hydrogen. <i>International Journal of Energy Research</i> , 2011 , 35, 44-51	4.5	8
65	Scaling Up Microfluidic Aluminum-Air Cell with Electrochemical Impedance Spectroscopy (EIS) Assisted Performance Analysis. <i>Journal of the Electrochemical Society</i> , 2016 , 163, F1032-F1037	3.9	8
64	Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis. <i>Journal of Materials Science and Technology</i> , 2022 , 101, 37-48	9.1	8
63	Novel urchin-like Fe2O3@SiO2@TiO2 microparticles with magnetically separable and photocatalytic properties. <i>RSC Advances</i> , 2015 , 5, 55363-55371	3.7	7
62	A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications. <i>Applied Energy</i> , 2018 , 217, 241-248	10.7	7
61	Sodium titanate nanowires as a stable and easily handled precursor for the shape controlled synthesis of TiO2 and their photocatalytic performance. <i>CrystEngComm</i> , 2014 , 16, 616-626	3.3	7
60	Characterization of a microfluidic reactor for CO2 conversion with electrolyte recycling. <i>Renewable Energy</i> , 2017 , 102, 15-20	8.1	7
59	A Photocatalytic Rotating Disc Reactor with TiOlNanowire Arrays Deposited for Industrial Wastewater Treatment. <i>Molecules</i> , 2017 , 22,	4.8	7
58	Effect of terrain and building structures on the airflow in an airport. <i>Journal of Zhejiang University: Science A</i> , 2012 , 13, 461-468	2.1	7
57	Removal of Formaldehyde Using Highly Active Pt/TiO2Catalysts without Irradiation. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-6	2.1	7
56	Recent developments of titanium dioxide materials for aquatic antifouling application. <i>Journal of Marine Science and Technology</i> , 2021 , 26, 301-321	1.7	7
55	The applications of graphene-based materials in pollutant control and disinfection. <i>Progress in Solid State Chemistry</i> , 2017 , 45-46, 1-8	8	6
54	A Numerical Study on Microfluidic Fuel Cell: Improving Fuel Utilization and Fuel Operation Concentration. <i>Energy Procedia</i> , 2014 , 61, 250-253	2.3	6
53	Numerical Modelling of the Compressible Airflow in a Solar-Waste-Heat Chimney Power Plant. <i>Energy Procedia</i> , 2017 , 142, 642-647	2.3	6
52	Photocatalytic Oxidation of Gaseous Benzene under 185 nm UV Irradiation. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-6	2.1	6

(2006-2016)

51	A Low-Cost Mechanically Rechargeable Aluminum Air Cell for Energy Conversion Using Low-Grade Aluminum Foil. <i>Journal of Electrochemical Energy Conversion and Storage</i> , 2016 , 13,	2	6	
50	A Counter-flow Microfluidic Fuel Cell Achieving Concentrated Fuel Operation. <i>Energy Procedia</i> , 2015 , 75, 1990-1995	2.3	5	
49	Modeling of a micro auto-electrolytic cell for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 10002-10009	6.7	5	
48	Vacuum Ultraviolet-Irradiated Photocatalysis: Advanced Process for Toluene Abatement. <i>Journal of Environmental Engineering, ASCE</i> , 2011 , 137, 996-1001	2	5	
47	Genome sequence of Pseudomonas mendocina DLHK, isolated from a biotrickling reactor. <i>Journal of Bacteriology</i> , 2012 , 194, 6326	3.5	5	
46	Numerical simulations of flow-field interactions between moving and stationary objects in idealized street canyon settings. <i>Journal of Fluids and Structures</i> , 2006 , 22, 315-326	3.1	5	
45	Numerical Simulation of Street Canyon Flows with Simple Building Geometries. <i>Journal of Environmental Engineering, ASCE</i> , 2005 , 131, 1099-1105	2	5	
44	Boosting cell performance and fuel utilization efficiency in a solar assisted methanol microfluidic fuel cell. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 21796-21807	6.7	5	
43	Doubling the power output of a Mg-air battery with an acid-salt dual-electrolyte configuration. <i>Journal of Power Sources</i> , 2021 , 506, 230144	8.9	5	
42	Polymeric Templating Synthesis of Anatase TiO2 Nanoparticles from Low-Cost Inorganic Titanium Sources. <i>ChemistrySelect</i> , 2017 , 2, 702-706	1.8	4	
41	Durability and stability of vapor-feed microfluidic fuel cells, a preliminary study. <i>Energy Procedia</i> , 2017 , 142, 1340-1345	2.3	4	
40	Parallel FEM LES with one-equation subgrid-scale model for incompressible flows. <i>International Journal of Computational Fluid Dynamics</i> , 2010 , 24, 37-49	1.2	4	
39	Finite element solution to passive scalar transport behind line sources under neutral and unstable stratification. <i>International Journal for Numerical Methods in Fluids</i> , 2006 , 50, 623-648	1.9	4	
38	Prediction of transient turbulent dispersion by CFD\(\text{S}\)tatistical hybrid modeling method. <i>Atmospheric Environment</i> , 2005 , 39, 6345-6351	5.3	4	
37	Simulations of wind field and other meteorological parameters in the complex terrain of Hong Kong using MC2 IA mesoscale numerical model. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1999 , 83, 71-82	3.7	4	
36	High-Energy SWCNT Cathode for Aqueous Al-Ion Battery Boosted by Multi-Ion Intercalation Chemistry. <i>Advanced Energy Materials</i> , 2021 , 11, 2101514	21.8	4	
35	Ozone diurnal characteristics in areas with different urbanizations. <i>International Journal of Environment and Pollution</i> , 2012 , 49, 100	0.7	3	
34	Turbulent transport of passive scalar behind line sources in an unstably stratified open channel flow. <i>International Journal of Heat and Mass Transfer</i> , 2006 , 49, 4305-4324	4.9	3	

33	Study of turbulence and pollutant dispersion in a neutrally and unstably stratified atmosphere using a second-order closure boundary-layer model. <i>International Journal of Environment and Pollution</i> , 2001 , 16, 16	0.7	3
32	Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method. <i>Journal of Materials Science and Technology</i> , 2022 , 116, 169-179	9.1	3
31	High-Performance MnO /Al Battery with In Situ Electrochemically Reformed Al MnO Nanosphere Cathode <i>Small Methods</i> , 2021 , 5, e2100491	12.8	3
30	A High Performance Dual Electrolyte Aluminium-air Cell. <i>Energy Procedia</i> , 2015 , 75, 1983-1989	2.3	2
29	Air Pollution Impact Due to Road Transportation in Hong Kong in the Next Decade. <i>HKIE Transactions</i> , 1995 , 2, 39-47	2.9	2
28	Orthogonal Array Design for Biodiesel Production Optimization - Using Ultrasonic-Assisted Transesterification of Camelina Sativa L. Crantz Oil 2011 ,		2
27	Integrating micro metal-air batteries in lateral flow test for point-of-care applications. <i>International Journal of Energy Research</i> , 2020 ,	4.5	2
26	Solid-state Al-air battery with an ethanol gel electrolyte. <i>Green Energy and Environment</i> , 2021 ,	5.7	2
25	Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 163-176	9.3	2
24	Mechanistic study of vacuum UV catalytic oxidation for toluene degradation over CeO2 nanorods. <i>Green Energy and Environment</i> , 2020 ,	5.7	1
23	Microfluidic Aluminum-air Cell with Methanol-based Anolyte. <i>Energy Procedia</i> , 2017 , 105, 4691-4697	2.3	1
22	Numerical Modelling of a Dual Electrolyte Membraneless Electrolytic Cell for CO 2 to Fuel Conversion. <i>Energy Procedia</i> , 2017 , 105, 4053-4058	2.3	1
21	An Up-scaling Strategy for Counter-flow Based Microfluidic Network: A Numerical Study. <i>Energy Procedia</i> , 2017 , 142, 661-666	2.3	1
20	In situ photogalvanic acceleration of optofluidic kinetics: a new paradigm for advanced photocatalytic technologies. <i>RSC Advances</i> , 2015 , 5, 791-796	3.7	1
19	An efficient approach to transient turbulent dispersion modeling by CFDEtatistical analysis of a many-puff system. <i>Fluid Dynamics Research</i> , 2009 , 41, 035512	1.2	1
18	Numerical study of atmospheric dispersion under unstably stratified atmosphere. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1997 , 67-68, 767-779	3.7	1
17	Performance analysis of a parallel finite element solution to the direct numerical simulation of fluid turbulence on Linux PC clusters. <i>Applied Mathematics and Computation</i> , 2006 , 172, 731-743	2.7	1
16	On plume meandering in unstable stratification. <i>Atmospheric Environment</i> , 2005 , 39, 2995-2999	5.3	1

LIST OF PUBLICATIONS

Performance Analysis of a Linux Pc Cluster Using a Direct Numerical Simulation of Fluid Turbulence Code. <i>International Journal of High Performance Computing Applications</i> , 2005 , 19, 365-374	1.8	1
A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation <i>Journal of Environmental Management</i> , 2022 , 307, 114559	7.9	1
Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. <i>Rare Metals</i> ,1	5.5	1
A printed paper-based Zn-air/Ag hybrid battery with switchable working modes. <i>Electrochimica Acta</i> , 2021 , 396, 139237	6.7	1
Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. <i>Carbon</i> , 2022 , 193, 272-284	10.4	1
Bifunctional Mn2+ grafted Ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor. <i>Chemical Engineering Science</i> , 2022 , 250, 117389	4.4	O
Evolution of Discharge Products on Carbon Nanotube Cathodes in LiD2 Batteries Unraveled by Molecular Dynamics and Density Functional Theory. <i>ACS Catalysis</i> ,5048-5059	13.1	О
Impact of Guide Wall Geometry on the Power Output of a Solar Chimney Power Plant. <i>Energy Procedia</i> , 2016 , 88, 414-421	2.3	
Modelling of Exhaust Emissions from Spark Ignition Vehicles. HKIE Transactions, 2000, 7, 51-54	2.9	
Assessment of the Air Pollution Problems inside Public Transport Interchanges in Hong Kong. <i>HKIE Transactions</i> , 1998 , 5, 58-65	2.9	
Turbulent Transport of Passive Scalar Emitted from Line Sources in an Open Channel Flow 2006 , 847-8	48	
High-Energy SWCNT Cathode for Aqueous Al-Ion Battery Boosted by Multi-Ion Intercalation Chemistry (Adv. Energy Mater. 39/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170155	21.8	
A Stable Numerical Method for the Time Dependent Navier-Stokes Equations and Its Application in Street Canyon Flows 2003 , 801-802		
A Switchable pH-differential Reactor with High Reactivity and Efficiency for CO2 Utilization. <i>Energy Procedia</i> , 2016 , 88, 634-641	2.3	
Mesoscale meteorological modelling for Hong Kong-application of the MC2 model. <i>Journal of Environmental Sciences</i> , 2002 , 14, 156-64	6.4	
	A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. <i>Journal of Environmental Management</i> , 2022, 307, 114559 Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. <i>Rare Metals</i> ,1 A printed paper-based Zn-air/Ag hybrid battery with switchable working modes. <i>Electrochimica Acta</i> , 2021, 396, 139237 Photocatalytic reduction of CO2 and degradation of Bisphenol-5 by g-C3N4/Cu2O@Cu 5-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. <i>Carbon</i> , 2022, 193, 272-284 Bifunctional Mn2+ grafted Ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor. <i>Chemical Engineering Science</i> , 2022, 250, 117389 Evolution of Discharge Products on Carbon Nanotube Cathodes in LiD2 Batteries Unraveled by Molecular Dynamics and Density Functional Theory. <i>ACS Catalysis</i> , 5048-5059 Impact of Guide Wall Geometry on the Power Output of a Solar Chimney Power Plant. <i>Energy Procedia</i> , 2016, 88, 414-421 Modelling of Exhaust Emissions from Spark Ignition Vehicles. <i>HKIE Transactions</i> , 2000, 7, 51-54 Assessment of the Air Pollution Problems inside Public Transport Interchanges in Hong Kong. <i>HKIE Transactions</i> , 1998, 5, 58-65 Turbulent Transport of Passive Scalar Emitted from Line Sources in an Open Channel Flow 2006, 847-8 High-Energy SWCNT Cathode for Aqueous Al-Ion Battery Boosted by Multi-Ion Intercalation Chemistry (Adv. Energy Mater. 39/2021). <i>Advanced Energy Materials</i> , 2021, 11, 2170155 A Stable Numerical Method for the Time Dependent Navier-Stokes Equations and Its Application in Street Canyon Flows 2003, 801-802 A Switchable pH-differential Reactor with High Reactivity and Efficiency for CO2 Utilization. <i>Energy Procedia</i> , 2016, 88, 634-641	A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation Journal of Environmental Management, 2022, 307, 114559 Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. Rare Metals,1 A printed paper-based Zn-air/Ag hybrid battery with switchable working modes. Electrochimica Acta ,2021, 396, 139237 Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 2022, 193, 272-284 Bifunctional Mn2+ grafted Ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor. Chemical Engineering Science, 2022, 250, 117389 Evolution of Discharge Products on Carbon Nanotube Cathodes in LiD2 Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 5048-5059 Impact of Guide Wall Geometry on the Power Output of a Solar Chimney Power Plant. Energy Procedia, 2016, 88, 414-421 Modelling of Exhaust Emissions from Spark Ignition Vehicles. HKIE Transactions, 2000, 7, 51-54 Assessment of the Air Pollution Problems inside Public Transport Interchanges in Hong Kong. HKIE Transactions, 1998, 5, 58-65 Turbulent Transport of Passive Scalar Emitted from Line Sources in an Open Channel Flow 2006, 847-848 High-Energy SWCNT Cathode for Aqueous Al-Ion Battery Boosted by Multi-Ion Intercalation Chemistry (Adv. Energy Mater. 39/2021). Advanced Energy Materials, 2021, 11, 2170155 A Stable Numerical Method for the Time Dependent Navier-Stokes Equations and Its Application in Street Canyon Flows 2003, 801-802 A Switchable pH-differential Reactor with High Reactivity and Efficiency for CO2 Utilization. Energy Procedia, 2016, 88, 634-641