List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. Journal of Pharmacological and Toxicological Methods, 2022, 113, 107131.	0.7	10
2	In vitro evaluation of the anti-melanoma effects (A375 cell line) of the gel and whole leaf extracts from selected aloe species. Journal of Herbal Medicine, 2022, 31, 100539.	2.0	5
3	Effects of Transport Medium Composition on In vitro Drug Permeation Across Excised Pig Intestinal Tissue. Drug Delivery Letters, 2021, 11, 62-70.	0.5	0
4	Formulation of Medicated Chewing Gum Containing Sceletium tortuosum and Process Optimization Utilizing the SeDeM Diagram Expert System. AAPS PharmSciTech, 2021, 22, 102.	3.3	3
5	Physicochemical Stability of Enriched Phenolic Fractions of Cyclopia genistoides and ex vivo Bi-directional Permeability of Major Xanthones and Benzophenones. Planta Medica, 2021, 87, 325-335.	1.3	2
6	Pharmacokinetic interactions: The effects of selected herbal extracts on permeation of P-glycoprotein substrate drugs across excised pig intestinal tissue. Journal of HerbMed Pharmacology, 2021, 11, 121-130.	0.9	0
7	Artificial membranes in combination with selected natural oils for <i>inÂvitro</i> drug passive diffusion screening in Ussing type chamber apparatus applied to gastro-retentive systems. Pharmaceutical Development and Technology, 2020, 25, 366-375.	2.4	2
8	Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT). Biology, 2020, 9, 350.	2.8	17
9	What are the dangers of drug interactions with herbal medicines?. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 165-167.	3.3	21
10	The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics, 2020, 12, 393.	4.5	88
11	Characterization of an Alginate Encapsulated LS180 Spheroid Model for Anti-colorectal Cancer Compound Screening. ACS Medicinal Chemistry Letters, 2020, 11, 1014-1021.	2.8	17
12	Permeation enhancement effects of leaf materials from different aloe species on <i>in vitro</i> and <i>ex vivo</i> nasal epithelial models. Journal of HerbMed Pharmacology, 2020, 9, 355-365.	0.9	3
13	Gastrointestinal Region Specific Insulin Permeation Enhancement by Aloe vera Gel. Drug Delivery Letters, 2020, 10, 117-122.	0.5	1
14	Capsaicin and Piperine as Functional Excipients for Improved Drug Delivery across Nasal Epithelial Models. Planta Medica, 2019, 85, 1114-1123.	1.3	11
15	Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1949-1976.	2.5	4
16	<i>Aloe vera</i> gel and whole leaf extract: functional and versatile excipients for drug delivery?. Expert Opinion on Drug Delivery, 2019, 16, 1283-1285.	5.0	11
17	A sub-chronic Xysmalobium undulatum hepatotoxicity investigation in HepG2/C3A spheroid cultures compared to an in vivo model. Journal of Ethnopharmacology, 2019, 239, 111897.	4.1	10
18	Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics, 2019, 11, 33.	4.5	57

#	Article	IF	CITATIONS
19	Intestinal Drug Absorption Enhancement by Aloe vera Gel and Whole Leaf Extract: In Vitro Investigations into the Mechanisms of Action. Pharmaceutics, 2019, 11, 36.	4.5	17
20	Development of multiple-unit pellet system tablets by employing the SeDeM expert diagram system II: pellets containing different active pharmaceutical ingredients. Pharmaceutical Development and Technology, 2019, 24, 145-156.	2.4	17
21	Treatment of Skin Disorders with Aloe Materials. Current Pharmaceutical Design, 2019, 25, 2208-2240.	1.9	10
22	The In Vitro and In Vivo Effects of Hypoxis hemerocallidea on Indinavir Pharmacokinetics: Modulation of Efflux. Planta Medica, 2018, 84, 895-901.	1.3	5
23	Excipient-drug pharmacokinetic interactions: Effect of disintegrants on efflux across excised pig intestinal tissues. Journal of Food and Drug Analysis, 2018, 26, S115-S124.	1.9	21
24	Recent developments in our understanding of the implications of traditional African medicine on drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 161-168.	3.3	7
25	Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: from a drug biotransformation and toxicity perspective. Toxicology Mechanisms and Methods, 2018, 28, 369-385.	2.7	20
26	Potential Herb-Drug Pharmacokinetic Interactions between African Wild Olive Leaf Extract and Selected Antihypertensive Drugs. Planta Medica, 2018, 84, 886-894.	1.3	1
27	Development of multiple-unit pellet system tablets by employing the SeDeM expert diagram system I: pellets with different sizes. Pharmaceutical Development and Technology, 2018, 23, 706-714.	2.4	19
28	Beneficial Pharmacokinetic Drug Interactions: A Tool to Improve the Bioavailability of Poorly Permeable Drugs. Pharmaceutics, 2018, 10, 106.	4.5	32
29	Development and Evaluation of a Double-phase Multiple-unit Dosage form for Enhanced Insulin Intestinal Delivery. Drug Delivery Letters, 2018, 8, .	0.5	2
30	Toxicity and anti-prolific properties of <i>Xysmalobium undulatum</i> water extract during short-term exposure to two-dimensional and three-dimensional spheroid cell cultures. Toxicology Mechanisms and Methods, 2018, 28, 641-652.	2.7	8
31	Absorptive and Secretory Transport of Selected Artemisinin Derivatives Across Caco-2 Cell Monolayers. Current Drug Delivery, 2018, 15, 1183-1192.	1.6	2
32	<i>In vitro</i> oral drug permeation models: the importance of taking physiological and physico-chemical factors into consideration. Expert Opinion on Drug Delivery, 2017, 14, 179-187.	5.0	12
33	The SeDeM Expert Diagram System: Its performance and predictability in direct compressible formulations containing novel excipients and different types of active ingredients. Powder Technology, 2017, 312, 222-236.	4.2	21
34	In vitro wound healing and cytotoxic activity of the gel and whole-leaf materials from selected aloe species. Journal of Ethnopharmacology, 2017, 200, 1-7.	4.1	66
35	Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opinion on Therapeutic Targets, 2017, 21, 23-36.	3.4	34
36	Cell-free DNA in a three-dimensional spheroid cell culture model: A preliminary study. International Journal of Biochemistry and Cell Biology, 2017, 89, 182-192.	2.8	15

#	Article	IF	CITATIONS
37	Multiple-Unit Pellet Systems (MUPS): Production and Applications as Advanced Drug Delivery Systems. Drug Delivery Letters, 2017, 7, .	0.5	1
38	Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles. Pharmacognosy Magazine, 2017, 13, 663.	0.6	12
39	Isolation and in vitro permeation of phenylpropylamino alkaloids from Khat (Catha edulis) across oral and intestinal mucosal tissues. Journal of Ethnopharmacology, 2016, 194, 307-315.	4.1	11
40	Combining Chemical Permeation Enhancers for Synergistic Effects. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 575-586.	1.6	6
41	Evaluation of Isolated Fractions of Aloe vera Gel Materials on Indinavir Pharmacokinetics: In vitro and in vivo Studies. Current Drug Delivery, 2016, 13, 471-480.	1.6	9
42	Herb-Drug Pharmacokinetic Interactions: Transport and Metabolism of Indinavir in the Presence of Selected Herbal Products. Molecules, 2015, 20, 22113-22127.	3.8	7
43	Herbal hepatotoxicity: current status, examples, and challenges. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1551-1565.	3.3	41
44	Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Development and Industrial Pharmacy, 2015, 41, 1100-1108.	2.0	29
45	Use of Natural Gums and Mucilages as Pharmaceutical Excipients. Current Pharmaceutical Design, 2015, 21, 4775-4797.	1.9	29
46	Editorial (Thematic Issue: Oral Delivery of Biotechnology based Drugs: Dream or Reality?). Current Pharmaceutical Biotechnology, 2014, 15, 639-639.	1.6	0
47	Impact of traditional African medicine on drug metabolism and transport. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 991-1003.	3.3	7
48	In Vivo skin hydration and anti-erythema effects of Aloe vera, Aloe ferox and Aloe marlothii gel materials after single and multiple applications. Pharmacognosy Magazine, 2014, 10, 392.	0.6	25
49	Poly (D,L-lactide-co-glycolide) nanoparticles: Uptake by epithelial cells and cytotoxicity. EXPRESS Polymer Letters, 2014, 8, 197-206.	2.1	13
50	Skin permeation enhancement effects of the gel and whole-leaf materials of <i>Aloe vera</i> , <i>Aloe marlothii</i> and <i>Aloe ferox</i> . Journal of Pharmacy and Pharmacology, 2014, 67, 96-106.	2.4	19
51	<i>In vitro</i> evaluation of the cytotoxic and apoptogenic properties of aloe whole leaf and gel materials. Drug and Chemical Toxicology, 2014, 37, 169-177.	2.3	22
52	Novel Non-Invasive Protein and Peptide Drug Delivery Approaches. Protein and Peptide Letters, 2014, 21, 1087-1101.	0.9	9
53	More Good News About Polymeric Plant- and Algae-Derived Biomaterials in Drug Delivery Systems. Current Drug Targets, 2014, 15, 486-501.	2.1	7
54	Review of Natural Compounds for Potential Skin Cancer Treatment. Molecules, 2014, 19, 11679-11721.	3.8	202

#	Article	IF	CITATIONS
55	Editorial: oral delivery of biotechnology based drugs: dream or reality?. Current Pharmaceutical Biotechnology, 2014, 15, 639.	1.6	0
56	Paracellular drug absorption enhancement through tight junction modulation. Expert Opinion on Drug Delivery, 2013, 10, 103-114.	5.0	94
57	Eudragit® L100/N-Trimethylchitosan Chloride Microspheres for Oral Insulin Delivery. Molecules, 2013, 18, 6734-6747.	3.8	22
58	Direct Compression of Chitosan: Process and Formulation Factors to Improve Powder Flow and Tablet Performance. Current Drug Delivery, 2013, 10, 348-356.	1.6	9
59	<i>In Vitro</i> Permeation of Mesembrine Alkaloids from <i>Sceletium tortuosum</i> across Porcine Buccal, Sublingual, and Intestinal Mucosa. Planta Medica, 2012, 78, 260-268.	1.3	19
60	Effects of dietary fruits, vegetables and a herbal tea on the <i>in vitro</i> transport of cimetidine: Comparing the Caco-2 model with porcine jejunum tissue. Pharmaceutical Biology, 2012, 50, 254-263.	2.9	7
61	Investigating the Effect of <i>Aloe vera</i> Gel on the Buccal Permeability of Didanosine. Planta Medica, 2012, 78, 354-361.	1.3	20
62	In Vitro Drug Absorption Enhancement Effects of Aloe vera and Aloe ferox. Scientia Pharmaceutica, 2012, 80, 475-486.	2.0	21
63	Permeation of PLGA Nanoparticles Across Different in vitro Models. Current Drug Delivery, 2012, 9, 617-627.	1.6	20
64	In Vitro Drug Permeation Enhancement Potential of Aloe Gel Materials. Current Drug Delivery, 2012, 9, 297-304.	1.6	17
65	Combination therapy of Western drugs and herbal medicines: recent advances in understanding interactions involving metabolism and efflux. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 973-984.	3.3	30
66	Excipients with specialized functions for effective drug delivery. Expert Opinion on Drug Delivery, 2012, 9, 219-230.	5.0	26
67	<i>Hoodia gordonii:</i> An Up-to-Date Review of a Commercially Important Anti-Obesity Plant. Planta Medica, 2011, 77, 1149-1160.	1.3	44
68	Transdermal Drug Delivery Enhancement by Compounds of Natural Origin. Molecules, 2011, 16, 10507-10540.	3.8	124
69	In vitro transport of the steroidal glycoside P57 from Hoodia gordonii across excised porcine intestinal and buccal tissue. Phytomedicine, 2011, 18, 783-787.	5.3	12
70	Natural products in anti-obesity therapy. Natural Product Reports, 2011, 28, 1493.	10.3	94
71	Moulded cross-linked chitosan matrix systems for controlled drug release. Pharmaceutical Development and Technology, 2011, 16, 295-301.	2.4	2
72	Effect of sinomenine on the <i>in vitro</i> intestinal epithelial transport of selected compounds. Phytotherapy Research, 2010, 24, 211-218.	5.8	17

#	Article	IF	CITATIONS
73	Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, 2010, 8, 1305-1322.	4.6	421
74	High performance thin layer chromatography as a method to authenticate Hoodia gordonii raw material and products. South African Journal of Botany, 2010, 76, 119-124.	2.5	15
75	The potential application of FT-Raman spectroscopy for the quantification and mapping of the steroidal glycoside P57 in Hoodia gordonii. Phytochemistry Letters, 2010, 3, 156-160.	1.2	4
76	A rapid spectroscopic method for quantification of P57 in Hoodia gordonii raw material. Food Chemistry, 2010, 120, 940-944.	8.2	10
77	Herb–drug pharmacokinetic interactions reviewed. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 1515-1538.	3.3	76
78	Chitosan–polycarbophil interpolyelectrolyte complex as a matrix former for controlled release of poorly water-soluble drugs I: in vitro evaluation. Drug Development and Industrial Pharmacy, 2010, 36, 539-546.	2.0	8
79	Intestinal Drug Transport Enhancement by <i>Aloe vera</i> . Planta Medica, 2009, 75, 587-595.	1.3	45
80	The effect of simulated gastrointestinal conditions on the antimicrobial activity and chemical composition of indigenous South African plant extracts. South African Journal of Botany, 2009, 75, 594-599.	2.5	14
81	Effect of simulated gastrointestinal conditions and epithelial transport on extracts of green tea and sage. Phytochemistry Letters, 2009, 2, 166-170.	1.2	6
82	Polymeric Plant-derived Excipients in Drug Delivery. Molecules, 2009, 14, 2602-2620.	3.8	245
83	Transport of aspalathin, a Rooibos tea flavonoid, across the skin and intestinal epithelium. Phytotherapy Research, 2008, 22, 699-704.	5.8	19
84	Composition and Applications of Aloe vera Leaf Gel. Molecules, 2008, 13, 1599-1616.	3.8	694
85	Impact of traditional medicinal plant extracts on antiretroviral drug absorption. Journal of Ethnopharmacology, 2008, 119, 588-592.	4.1	51
86	Matrix Polymeric Excipients: Comparing a Novel Interpolyelectrolyte Complex with Hydroxypropylmethylcellulose. Drug Delivery, 2008, 15, 87-96.	5.7	13
87	Intestinal Drug Absorption Enhancers: Synergistic Effects of Combinations. Drug Development and Industrial Pharmacy, 2008, 34, 1343-1349.	2.0	9
88	Chitosan-Polycarbophil Interpolyelectrolyte Complex as an Excipient for Bioadhesive Matrix Systems to Control Macromolecular Drug Delivery. Pharmaceutical Development and Technology, 2008, 13, 37-47.	2.4	10
89	Chitosan-Polycarbophil Complexes in Swellable Matrix Systems for Controlled Drug Release. Current Drug Delivery, 2007, 4, 257-263.	1.6	16
90	Cross-Linked Cationic Polymer Microparticles: Effect of N-Trimethyl Chitosan Chloride on the Release	2.0	14

#	Article	IF	CITATIONS
91	Oral Delivery of Peptide Drugs. BioDrugs, 2005, 19, 165-177.	4.6	385
92	Cross-Linked Cationic Polymer Microparticles: Effect of N-Trimethyl Chitosan Chloride on the Release and Permeation of Ibuprofen. Drug Development and Industrial Pharmacy, 2005, 31, 311-317.	2.0	2
93	N-Trimethyl Chitosan Chloride: Optimum Degree of Quaternization for Drug Absorption Enhancement Across Epithelial Cells. Drug Development and Industrial Pharmacy, 2003, 29, 161-172.	2.0	97
94	Effect of oral contraceptives on the transport of chlorpromazine across the CACO-2 intestinal epithelial cell line. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 159-165.	4.3	10
95	Evaluation of the Mucoadhesive Properties ofN-Trimethyl Chitosan Chloride. Drug Development and Industrial Pharmacy, 2003, 29, 61-69.	2.0	106
96	Intestinal paracellular permeation enhancement with quaternised chitosan: in situ and in vitro evaluation. International Journal of Pharmaceutics, 2002, 238, 205-213.	5.2	65
97	The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride. Carbohydrate Polymers, 2002, 50, 145-150.	10.2	126
98	Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. International Journal of Pharmaceutics, 2002, 232, 235-242.	5.2	130
99	Effect of the Type of Base and Number of Reaction Steps on the Degree of Quaternization and Molecular Weight ofN-Trimethyl Chitosan Chloride. Drug Development and Industrial Pharmacy, 2001, 27, 373-380.	2.0	78