Eric Lauga

List of Publications by Citations

Source: https://exaly.com/author-pdf/6662093/eric-lauga-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 222
 11,296
 49
 102

 papers
 citations
 h-index
 g-index

 239
 13,289
 4.6
 7.18

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
222	The hydrodynamics of swimming microorganisms. <i>Reports on Progress in Physics</i> , 2009 , 72, 096601	14.4	1522
221	Swimming in circles: motion of bacteria near solid boundaries. <i>Biophysical Journal</i> , 2006 , 90, 400-12	2.9	638
220	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. <i>Nature Materials</i> , 2016 , 15, 647-53	27	558
219	Effective slip in pressure-driven Stokes flow. <i>Journal of Fluid Mechanics</i> , 2003 , 489, 55-77	3.7	551
218	Hydrodynamic attraction of swimming microorganisms by surfaces. <i>Physical Review Letters</i> , 2008 , 101, 038102	7.4	527
217	Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small, 2012, 8, 460-7	11	326
216	Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. <i>Journal of Fluid Mechanics</i> , 2012 , 700, 105-147	3.7	306
215	Bacterial Hydrodynamics. Annual Review of Fluid Mechanics, 2016, 48, 105-130	22	231
214	Propulsion in a viscoelastic fluid. <i>Physics of Fluids</i> , 2007 , 19, 083104	4.4	224
213	A smooth future?. Nature Materials, 2011, 10, 334-7	27	212
212	Microfluidics: The No-Slip Boundary Condition 2007 , 1219-1240		2 00
211	High-speed propulsion of flexible nanowire motors: Theory and experiments. <i>Soft Matter</i> , 2011 , 7, 8169	€ 3.6	164
21 0	Life around the scallop theorem. <i>Soft Matter</i> , 2011 , 7, 3060-3065	3.6	139
209	Adaptive locomotion of artificial microswimmers. <i>Science Advances</i> , 2019 , 5, eaau1532	14.3	127
208	Geometric transition in friction for flow over a bubble mattress. <i>Physics of Fluids</i> , 2009 , 21, 011701	4.4	126
207	Experimental investigations of elastic tail propulsion at low Reynolds number. <i>Physics of Fluids</i> , 2006 , 18, 091701	4.4	124
206	Self-propulsion in viscoelastic fluids: Pushers vs. pullers. <i>Physics of Fluids</i> , 2012 , 24, 051902	4.4	123

(2008-2013)

205	Spontaneous autophoretic motion of isotropic particles. <i>Physics of Fluids</i> , 2013 , 25, 061701	4.4	120
204	Phoretic self-propulsion at finite Pālet numbers. <i>Journal of Fluid Mechanics</i> , 2014 , 747, 572-604	3.7	119
203	The 2020 motile active matter roadmap. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 193001	1.8	115
202	Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matter, 2015, 11, 339	063,461.1	111
201	Dynamic mechanisms for apparent slip on hydrophobic surfaces. <i>Physical Review E</i> , 2004 , 70, 026311	2.4	102
200	Dynamics of swimming bacteria at complex interfaces. <i>Physics of Fluids</i> , 2014 , 26, 071902	4.4	100
199	Hydrodynamic phase locking of swimming microorganisms. <i>Physical Review Letters</i> , 2009 , 103, 088101	7.4	95
198	Hydrodynamics of confined active fluids. <i>Physical Review Letters</i> , 2013 , 110, 038101	7.4	93
197	Generalized squirming motion of a sphere. <i>Journal of Engineering Mathematics</i> , 2014 , 88, 1-28	1.2	92
196	Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. <i>Physics of Fluids</i> , 2010 , 22, 111901	4.4	92
195	Hydrodynamic friction of fakir-like superhydrophobic surfaces. <i>Journal of Fluid Mechanics</i> , 2010 , 661, 402-411	3.7	92
194	Orientational order in concentrated suspensions of spherical microswimmers. <i>Physics of Fluids</i> , 2011 , 23, 111702	4.4	92
193	Waving transport and propulsion in a generalized Newtonian fluid. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2013 , 199, 37-50	2.7	91
192	Evaporation-driven assembly of colloidal particles. <i>Physical Review Letters</i> , 2004 , 93, 238301	7.4	88
191	Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. <i>Physics of Fluids</i> , 2014 , 26, 082001	4.4	83
190	Floppy swimming: viscous locomotion of actuated elastica. <i>Physical Review E</i> , 2007 , 75, 041916	2.4	83
189	Viscous Marangoni propulsion. <i>Journal of Fluid Mechanics</i> , 2012 , 705, 120-133	3.7	78
188	Soft swimming: exploiting deformable interfaces for low reynolds number locomotion. <i>Physical Review Letters</i> , 2008 , 101, 048102	7.4	73

187	Brownian motion near a partial-slip boundary: A local probe of the no-slip condition. <i>Physics of Fluids</i> , 2005 , 17, 103102	4.4	73
186	The optimal elastic flagellum. <i>Physics of Fluids</i> , 2010 , 22, 031901	4.4	70
185	No many-scallop theorem: collective locomotion of reciprocal swimmers. <i>Physical Review E</i> , 2008 , 78, 030901	2.4	70
184	Comparative hydrodynamics of bacterial polymorphism. <i>Physical Review Letters</i> , 2011 , 106, 058103	7.4	66
183	Enhanced active swimming in viscoelastic fluids. <i>Europhysics Letters</i> , 2014 , 108, 34003	1.6	65
182	Kinematics of the most efficient cilium. <i>Physical Review Letters</i> , 2012 , 109, 038101	7.4	65
181	Fluid elasticity increases the locomotion of flexible swimmers. <i>Physics of Fluids</i> , 2013 , 25, 031701	4.4	64
180	Locomotion by tangential deformation in a polymeric fluid. <i>Physical Review E</i> , 2011 , 83, 011901	2.4	60
179	Optimal feeding is optimal swimming for all Pālet numbers. <i>Physics of Fluids</i> , 2011 , 23, 101901	4.4	59
178	Flapping motion and force generation in a viscoelastic fluid. <i>Physical Review E</i> , 2008 , 78, 061907	2.4	58
177	Micropropulsion and microrheology in complex fluids via symmetry breaking. <i>Physics of Fluids</i> , 2012 , 24, 103102	4.4	57
176	A note on the stability of slip channel flows. <i>Physics of Fluids</i> , 2005 , 17, 088106	4.4	57
175	Locomotion in complex fluids: Integral theorems. <i>Physics of Fluids</i> , 2014 , 26, 081902	4.4	56
174	Influence of slip on the dynamics of two-dimensional wakes. Journal of Fluid Mechanics, 2009, 633, 437-	4 4 . 7	54
173	Propulsion of Bubble-Based Acoustic Microswimmers. <i>Physical Review Applied</i> , 2015 , 4,	4.3	49
172	Dance of the microswimmers. <i>Physics Today</i> , 2012 , 65, 30-35	0.9	49
171	Synchronization of flexible sheets. <i>Journal of Fluid Mechanics</i> , 2011 , 674, 163-173	3.7	47
170	Autophoretic locomotion from geometric asymmetry. European Physical Journal E, 2015 , 38, 91	1.5	46

(2010-2004)

169	Three-dimensional flows in slowly varying planar geometries. <i>Physics of Fluids</i> , 2004 , 16, 3051-3062	4.4	46
168	A squirmer across Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2016 , 796, 233-256	3.7	45
167	Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities. <i>Physics of Fluids</i> , 1999 , 11, 3716-3728	4.4	43
166	Taylor swimming sheet: Analysis and improvement of the perturbation series. <i>Physica D: Nonlinear Phenomena</i> , 2011 , 240, 1567-1573	3.3	42
165	Geometric tuning of self-propulsion for Janus catalytic particles. Scientific Reports, 2017, 7, 42264	4.9	41
164	Small-amplitude swimmers can self-propel faster in viscoelastic fluids. <i>Journal of Theoretical Biology</i> , 2015 , 382, 345-55	2.3	41
163	Phase-separation models for swimming enhancement in complex fluids. <i>Physical Review E</i> , 2015 , 92, 02	.3 ፩ Ωμ4	41
162	Enhanced diffusion by reciprocal swimming. <i>Physical Review Letters</i> , 2011 , 106, 178101	7.4	41
161	Stochastic dynamics of active swimmers in linear flows. <i>Journal of Fluid Mechanics</i> , 2014 , 742, 50-70	3.7	40
160	Passive hydrodynamic synchronization of two-dimensional swimming cells. <i>Physics of Fluids</i> , 2011 , 23, 011902	4.4	40
159	Spontaneous oscillations of elastic filaments induced by molecular motors. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	39
158	Two-dimensional flagellar synchronization in viscoelastic fluids. <i>Journal of Fluid Mechanics</i> , 2010 , 646, 505-515	3.7	39
157	Pumping by flapping in a viscoelastic fluid. <i>Physical Review E</i> , 2010 , 81, 036312	2.4	36
156	Continuous breakdown of Purcell scallop theorem with inertia. <i>Physics of Fluids</i> , 2007 , 19, 061703	4.4	36
4 F F	Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability. Scientific		2.5
155	Reports, 2018, 8, 10728	4.9	35
154		4.9	35
	Reports, 2018 , 8, 10728		

151	Active particles in periodic lattices. New Journal of Physics, 2017, 19, 115001	2.9	33
150	Energetics of synchronized states in three-dimensional beating flagella. <i>Physical Review E</i> , 2011 , 84, 06	19045	33
149	Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. Journal of Fluid Mechanics, 2004 , 512,	3.7	33
148	Slender-ribbon theory. <i>Physics of Fluids</i> , 2016 , 28, 013101	4.4	33
147	The wobbling-to-swimming transition of rotated helices. <i>Physics of Fluids</i> , 2013 , 25, 071904	4.4	32
146	Elastohydrodynamic Synchronization of Adjacent Beating Flagella. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	32
145	The boundary integral formulation of Stokes flows includes slender-body theory. <i>Journal of Fluid Mechanics</i> , 2018 , 850,	3.7	32
144	Shape of optimal active flagella. <i>Journal of Fluid Mechanics</i> , 2013 , 730,	3.7	31
143	The transient swimming of a waving sheet. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2010 , 466, 107-126	2.4	31
142	Helical propulsion in shear-thinning fluids. <i>Journal of Fluid Mechanics</i> , 2017 , 812,	3.7	30
141	Optimal swimming of a sheet. <i>Physical Review E</i> , 2014 , 89, 060701	2.4	30
140	Nondecaying Hydrodynamic Interactions along Narrow Channels. <i>Physical Review Letters</i> , 2015 , 115, 038301	7.4	30
139	The passive diffusion of Leptospira interrogans. <i>Physical Biology</i> , 2014 , 11, 066008	3	30
138	Bundling of elastic filaments induced by hydrodynamic interactions. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	30
137	Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	29
136	The long-time dynamics of two hydrodynamically-coupled swimming cells. <i>Bulletin of Mathematical Biology</i> , 2010 , 72, 973-1005	2.1	29
135	Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling. <i>Physics of Fluids</i> , 2006 , 18, 113102	4.4	28
134	The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2077-209)5 ^{2.4}	28

133	Autophoretic motion in three dimensions. Soft Matter, 2018, 14, 3304-3314	3.6	27
132	Crawling scallop: friction-based locomotion with one degree of freedom. <i>Journal of Theoretical Biology</i> , 2013 , 324, 42-51	2.3	27
131	Self-assembly of spherical particles on an evaporating sessile droplet. <i>Langmuir</i> , 2006 , 22, 4547-51	4	27
130	The Fluid Dynamics of Cell Motility 2020 ,		26
129	Light-switchable propulsion of active particles with reversible interactions. <i>Nature Communications</i> , 2020 , 11, 2628	17.4	25
128	Physics of Bubble-Propelled Microrockets. <i>Advanced Functional Materials</i> , 2018 , 28, 1800686	15.6	25
127	Collective dissolution of microbubbles. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	25
126	Unsteady feeding and optimal strokes of model ciliates. <i>Journal of Fluid Mechanics</i> , 2013 , 715, 1-31	3.7	24
125	Bubble-based acoustic micropropulsors: active surfaces and mixers. <i>Lab on A Chip</i> , 2017 , 17, 1515-1528	7.2	23
124	Jet propulsion without inertia. <i>Physics of Fluids</i> , 2010 , 22, 081902	4.4	23
123	Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. <i>Langmuir</i> , 2004 , 20, 8924-30	4	23
122	Stresslets Induced by Active Swimmers. <i>Physical Review Letters</i> , 2016 , 117, 148001	7.4	22
121	Shape-programmed 3D printed swimming microtori for the transport of passive and active agents. <i>Nature Communications</i> , 2019 , 10, 4932	17.4	21
120	Elastocapillary self-folding: buckling, wrinkling, and collapse of floating filaments. <i>Soft Matter</i> , 2013 , 9, 1711-1720	3.6	21
119	Crawling beneath the free surface: Water snail locomotion. <i>Physics of Fluids</i> , 2008 , 20, 082106	4.4	21
118	Arbitrary axisymmetric steady streaming: flow, force and propulsion. <i>Journal of Engineering Mathematics</i> , 2017 , 105, 31-65	1.2	20
117	Flagellar flows around bacterial swarms. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	20
116	Geometric pumping in autophoretic channels. <i>Soft Matter</i> , 2015 , 11, 5804-11	3.6	19

115	Hydrodynamic fluctuations in confined particle-laden fluids. <i>Physical Review Letters</i> , 2013 , 111, 118301	7.4	19
114	A regularised singularity approach to phoretic problems. European Physical Journal E, 2015 , 38, 139	1.5	19
113	Optimal propulsive flapping in Stokes flows. <i>Bioinspiration and Biomimetics</i> , 2014 , 9, 016001	2.6	19
112	Active and driven hydrodynamic crystals. European Physical Journal E, 2012, 35, 68	1.5	19
111	Capillary instability on a hydrophilic stripe. New Journal of Physics, 2009, 11, 075024	2.9	19
110	Analytical solutions to slender-ribbon theory. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	19
109	Theory of Locomotion Through Complex Fluids 2015 , 283-317		19
108	Swimming with a cage: low-Reynolds-number locomotion inside a droplet. <i>Soft Matter</i> , 2017 , 13, 3161-3	13763	18
107	A Light-Driven Microgel Rotor. Small, 2019 , 15, e1903379	11	18
106	Mixing by microorganisms in stratified fluids. <i>Journal of Marine Research</i> , 2014 , 72, 47-72	1.5	18
105	Self-organization of swimmers drives long-range fluid transport in bacterial colonies. <i>Nature Communications</i> , 2019 , 10, 1792	17.4	17
104	Active Particles Powered by Quincke Rotation in a Bulk Fluid. <i>Physical Review Letters</i> , 2019 , 122, 194503	³ 7-4	16
103	The bearable gooeyness of swimming. <i>Journal of Fluid Mechanics</i> , 2015 , 762, 1-4	3.7	16
102	Empirical resistive-force theory for slender biological filaments in shear-thinning fluids. <i>Physical Review E</i> , 2017 , 95, 062416	2.4	15
101	Geometry and wetting of capillary folding. <i>Physical Review E</i> , 2014 , 89, 043011	2.4	15
100	Swimming eukaryotic microorganisms exhibit a universal speed distribution. ELife, 2019, 8,	8.9	15
99	Sensing in the Mouth: A Model for Filiform Papillae as Strain Amplifiers. Frontiers in Physics, 2016, 4,	3.9	15
98	Hydrodynamic interactions between nearby slender filaments. <i>Europhysics Letters</i> , 2016 , 116, 24002	1.6	15

(2016-2016)

97	Flow analysis of the low Reynolds number swimmer C. elegans. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	14
96	Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour. <i>Journal of Fluid Mechanics</i> , 2018 , 856, 921-957	3.7	14
95	Reciprocal locomotion of dense swimmers in Stokes flow. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 204103	1.8	13
94	Stokesian jellyfish: viscous locomotion of bilayer vesicles. <i>Soft Matter</i> , 2010 , 6, 1737	3.6	12
93	Selectively controlled magnetic microrobots with opposing helices. <i>Applied Physics Letters</i> , 2020 , 116, 134101	3.4	12
92	The swimming of a deforming helix. European Physical Journal E, 2018, 41, 119	1.5	11
91	Swirling Instability of the Microtubule Cytoskeleton. <i>Physical Review Letters</i> , 2021 , 126, 028103	7.4	11
90	Computing the motor torque of Escherichia coli. Soft Matter, 2018, 14, 5955-5967	3.6	10
89	A reciprocal theorem for boundary-driven channel flows. <i>Physics of Fluids</i> , 2015 , 27, 111701	4.4	10
88	Stability and non-linear response of 1D microfluidic-particle streams. <i>Soft Matter</i> , 2011 , 7, 11082	3.6	10
87	Adhesion transition of flexible sheets. <i>Physical Review E</i> , 2009 , 79, 066116	2.4	10
86	Hydrodynamics of the double-wave structure of insect spermatozoa flagella. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1908-24	4.1	10
85	Autophoretic flow on a torus. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	10
84	CHAPTER 4:Theoretical Models of Low-Reynolds-Number Locomotion. <i>RSC Soft Matter</i> , 2015 , 100-167	0.5	10
83	Cilia metasurfaces for electronically programmable microfluidic manipulation. <i>Nature</i> , 2022 , 605, 681-6	68 6 0.4	10
82	Microscale flow dynamics of ribbons and sheets. <i>Soft Matter</i> , 2017 , 13, 546-553	3.6	9
81	The -flagella problem: elastohydrodynamic motility transition of multi-flagellated bacteria. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 2018069	0 ^{2.4}	9
80	Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers. <i>Physical Review Applied</i> , 2016 , 5,	4.3	9

79	Can phoretic particles swim in two dimensions?. <i>Physical Review E</i> , 2016 , 94, 062606	2.4	9
78	The bank of swimming organisms at the micron scale (BOSO-Micro). <i>PLoS ONE</i> , 2021 , 16, e0252291	3.7	8
77	Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface 2018 ,		8
76	Viscoelastic propulsion of a rotating dumbbell. <i>Microfluidics and Nanofluidics</i> , 2019 , 23, 1	2.8	7
75	Active rotational dynamics of a self-diffusiophoretic colloidal motor. <i>Soft Matter</i> , 2020 , 16, 1236-1245	3.6	7
74	Microswimming in viscoelastic fluids. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2021 , 297, 104655	2.7	7
73	The non-Gaussian tops and tails of diffusing boomerangs. Soft Matter, 2017, 13, 2977-2982	3.6	6
72	The other optimal Stokes drag profile. <i>Journal of Fluid Mechanics</i> , 2015 , 762,	3.7	6
71	Shaking-induced motility in suspensions of soft active particles. <i>Physical Review E</i> , 2010 , 81, 026312	2.4	6
70	Two-fluid model for locomotion under self-confinement. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	6
69	Method of regularized stokeslets: Flow analysis and improvement of convergence. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	6
68	Rechargeable self-assembled droplet microswimmers driven by surface phase transitions. <i>Nature Physics</i> , 2021 , 17, 1050-1055	16.2	6
67	Small acoustically forced symmetric bodies in viscous fluids. <i>Journal of the Acoustical Society of America</i> , 2016 , 139, 1081-92	2.2	6
66	Helical micropumps near surfaces. <i>Biomicrofluidics</i> , 2018 , 12, 014108	3.2	5
65	Stochastic dynamics of dissolving active particles. European Physical Journal E, 2019, 42, 88	1.5	5
64	Viscous pumping inspired by flexible propulsion. <i>Bioinspiration and Biomimetics</i> , 2014 , 9, 036007	2.6	5
63	Sedimentation of a rotating sphere in a power-law fluid. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2014 , 213, 27-30	2.7	5
62	Extensibility enables locomotion under isotropic drag. <i>Physics of Fluids</i> , 2011 , 23, 081702	4.4	5

(2020-2011)

61	Emergency cell swimming. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7655-6	11.5	5
60	Buckling instability of squeezed droplets. <i>Physics of Fluids</i> , 2012 , 24, 072102	4.4	5
59	Order and information in the patterns of spinning magnetic micro-disks at the air-water interface <i>Science Advances</i> , 2022 , 8, eabk0685	14.3	5
58	Viscous growth and rebound of a bubble near a rigid surface. <i>Journal of Fluid Mechanics</i> , 2019 , 860, 172-	.3 9/9	5
57	Geometrical Constraints on the Tangling of Bacterial Flagellar Filaments. <i>Scientific Reports</i> , 2020 , 10, 8406	4.9	4
56	Irreversible hydrodynamic trapping by surface rollers. <i>Soft Matter</i> , 2020 , 16, 2611-2620	3.6	4
55	Rotation of slender swimmers in isotropic-drag media. <i>Physical Review E</i> , 2016 , 93, 043125	2.4	4
54	Transition to bound states for bacteria swimming near surfaces. <i>Physical Review E</i> , 2019 , 100, 043117	2.4	4
53	Mechanical Aspects of Biological Locomotion. Experimental Mechanics, 2010, 50, 1259-1261	2.6	4
52	Modern control of linear global instability in a cylinder wake model. <i>International Journal of Heat and Fluid Flow</i> , 2002 , 23, 671-677	2.4	4
51	Hydrodynamics of bacteriophage migration along bacterial flagella. Physical Review Fluids, 2019, 4,	2.8	4
50	Spontaneous onset of convection in a uniform phoretic channel. <i>Soft Matter</i> , 2020 , 16, 1259-1269	3.6	4
49	Clustering instability of focused swimmers. Europhysics Letters, 2016, 116, 64004	1.6	4
48	The near and far of a pair of magnetic capillary disks. <i>Soft Matter</i> , 2019 , 15, 1497-1507	3.6	3
47	Leading-order Stokes flows near a corner. IMA Journal of Applied Mathematics, 2018, 83, 590-633	1	3
46	Universal optimal geometry of minimal phoretic pumps. Scientific Reports, 2019, 9, 10788	4.9	3
45	Publisher Note: Enhanced Diffusion by Reciprocal Swimming [Phys. Rev. Lett. 106, 178101 (2011)]. <i>Physical Review Letters</i> , 2011 , 106,	7.4	3
44	Stokes flow due to point torques and sources in a spherical geometry. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	3

43	Direct versus indirect hydrodynamic interactions during bundle formation of bacterial flagella. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	3
42	Front-back asymmetry controls the impact of viscoelasticity on helical swimming. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3
41	Phoretic flow induced by asymmetric confinement. Journal of Fluid Mechanics, 2016, 799,	3.7	3
40	Purely viscous acoustic propulsion of bimetallic rods. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3
39	A stochastic model for bacteria-driven micro-swimmers. Soft Matter, 2019, 15, 2605-2616	3.6	2
38	Propulsion by stiff elastic filaments in viscous fluids. <i>Physical Review E</i> , 2019 , 99, 053107	2.4	2
37	Collective stiffening of soft hair assemblies. <i>Physical Review E</i> , 2020 , 102, 010602	2.4	2
36	Rotational propulsion enabled by inertia. <i>European Physical Journal E</i> , 2014 , 37, 16	1.5	2
35	Fluid transport by active elastic membranes. <i>Physical Review E</i> , 2011 , 84, 031924	2.4	2
34	Self-organisation and convection of confined magnetotactic bacteria. Scientific Reports, 2020, 10, 1357	'84.9	2
33	The fluid dynamics of collective vortex structures of plant-animal worms. <i>Journal of Fluid Mechanics</i> , 2021 , 914,	3.7	2
32	Hydrodynamic synchronization in strong confinement. <i>Physical Review E</i> , 2021 , 103, 022403	2.4	2
31	Fluid flow in the sarcomere. Archives of Biochemistry and Biophysics, 2021, 706, 108923	4.1	2
30	Hydrodynamic model for Spiroplasma motility. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	1
29	Traveling waves are hydrodynamically optimal for long-wavelength flagella. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	1
28	Cilia density and flow velocity affect alignment of motile cilia from brain cells. <i>Journal of Experimental Biology</i> , 2020 , 223,	3	1
27	Fluid Mechanics of Mosaic Ciliated Tissues. <i>Physical Review Letters</i> , 2021 , 127, 198102	7.4	1
26	Stabilizing viscous extensional flows using reinforcement learning <i>Physical Review E</i> , 2021 , 104, 0551	N8 ₂₋₄	1

(2020-2021)

25	Geometric phase methods with Stokes theorem for a general viscous swimmer. <i>Journal of Fluid Mechanics</i> , 2021 , 916,	3.7	1
24	Direct measurement of unsteady microscale Stokes flow using optically driven microspheres. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	1
23	Rebound and scattering of motile algae in confined chambers. Soft Matter, 2021, 17, 4857-4873	3.6	1
22	Zigzag instability of biased pusher swimmers. <i>Europhysics Letters</i> , 2021 , 133, 44002	1.6	1
21	Hydrodynamic interactions between a point force and a slender filament. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	1
20	Energetics of synchronization for model flagella and cilia. <i>Physical Review E</i> , 2021 , 103, 042419	2.4	O
19	A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. <i>Biophysical Journal</i> , 2021 , 120, 4079-4090	2.9	О
18	Jet-driven viscous locomotion of confined thermoresponsive microgels. <i>Applied Physics Letters</i> , 2022 , 120, 104101	3.4	Ο
17	Biological Background 2020 , 3-11		
16	The Fluid Dynamics of Microscopic Locomotion 2020 , 12-28		
15	The Waving Sheet Model 2020 , 29-44		
14	The Squirmer Model 2020 , 45-62		
13	Cellular Locomotion 2020 , 63-64		
12	Flagella and the Physics of Viscous Propulsion 2020 , 65-76		
11	Hydrodynamics of Slender Filaments 2020 , 77-96		
10	Waving of Eukaryotic Flagella 2020 , 97-119		
9	Rotation of Bacterial Flagellar Filaments 2020 , 120-138		
8	Flows and Stresses Induced by Cells 2020 , 139-156		

- Swimming Cells in Flows **2020**, 159-185
- 6 Self-Propulsion and Surfaces **2020**, 186-225
- 5 Hydrodynamic Synchronisation **2020**, 226-268
- Diffusion and Noisy Swimming **2020**, 269-290
- 3 Hydrodynamics of Collective Locomotion **2020**, 291-314
- Locomotion and Transport in Complex Fluids **2020**, 315-352
- Hydrodynamics and direction change of tumbling bacteria. *PLoS ONE*, **2021**, 16, e0254551

3.7