

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6661771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 2010, 62, 1064-1079.	6.6	1,235
2	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
3	Rethinking cancer nanotheranostics. Nature Reviews Materials, 2017, 2, .	23.3	860
4	Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Accounts of Chemical Research, 2011, 44, 883-892.	7.6	520
5	PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles. Journal of Nuclear Medicine, 2008, 49, 1371-1379.	2.8	507
6	Au–Fe ₃ O ₄ Dumbbell Nanoparticles as Dualâ€Functional Probes. Angewandte Chemie - International Edition, 2008, 47, 173-176.	7.2	490
7	Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 2006, 128, 10676-10677.	6.6	483
8	PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31, 3016-3022.	5.7	456
9	Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles. ACS Nano, 2010, 4, 7151-7160.	7.3	417
10	Ultrasmall c(RGDyK)-Coated Fe ₃ O ₄ Nanoparticles and Their Specific Targeting to Integrin α _v β ₃ -Rich Tumor Cells. Journal of the American Chemical Society, 2008, 130, 7542-7543.	6.6	405
11	Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Scientific Reports, 2013, 3, 1554.	1.6	388
12	Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment. Nano Letters, 2015, 15, 2249-2256.	4.5	312
13	RGD-Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors. ACS Nano, 2013, 7, 4830-4837.	7.3	308
14	Peptides and Peptide Hormones for Molecular Imaging and Disease Diagnosis. Chemical Reviews, 2010, 110, 3087-3111.	23.0	300
15	Ferritin Nanocages To Encapsulate and Deliver Photosensitizers for Efficient Photodynamic Therapy against Cancer. ACS Nano, 2013, 7, 6988-6996.	7.3	246
16	Chimeric Ferritin Nanocages for Multiple Function Loading and Multimodal Imaging. Nano Letters, 2011, 11, 814-819.	4.5	240
17	Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles. ACS Nano, 2014, 8, 6004-6013.	7.3	218
18	HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. Molecular Pharmaceutics, 2011, 8, 1669-1676.	2.3	195

#	Article	IF	CITATIONS
19	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 2006, 18, 5401-5403.	3.2	185
20	Ultrasmall Nearâ€Infrared Non admium Quantum Dots for in vivo Tumor Imaging. Small, 2010, 6, 256-261.	5.2	174
21	X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics, 2016, 6, 2295-2305.	4.6	171
22	Red Blood Cellâ€Facilitated Photodynamic Therapy for Cancer Treatment. Advanced Functional Materials, 2016, 26, 1757-1768.	7.8	167
23	Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control. Nano Letters, 2017, 17, 862-869.	4.5	167
24	Gdâ€Encapsulated Carbonaceous Dots with Efficient Renal Clearance for Magnetic Resonance Imaging. Advanced Materials, 2014, 26, 6761-6766.	11.1	151
25	One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure and Applied Chemistry, 2006, 78, 1003-1014.	0.9	150
26	Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics, 2018, 8, 2521-2548.	4.6	149
27	Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials, 2009, 30, 6912-6919.	5.7	147
28	Nanoparticle‣aden Macrophages for Tumorâ€īropic Drug Delivery. Advanced Materials, 2018, 30, e1805557.	11.1	143
29	Wet/Sonoâ€Chemical Synthesis of Enzymatic Twoâ€Dimensional MnO ₂ Nanosheets for Synergistic Catalysisâ€Enhanced Phototheranostics. Advanced Materials, 2019, 31, e1900401.	11.1	139
30	Gadoliniumâ€Encapsulated Graphene Carbon Nanotheranostics for Imagingâ€Guided Photodynamic Therapy. Advanced Materials, 2018, 30, e1802748.	11.1	135
31	HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging. Chemical Communications, 2010, 46, 6684.	2.2	132
32	LiGa ₅ O ₈ :Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Materials Horizons, 2017, 4, 1092-1101.	6.4	128
33	Breaking the Depth Dependence by Nanotechnologyâ€Enhanced Xâ€Rayâ€Excited Deep Cancer Theranostics. Advanced Materials, 2019, 31, e1806381.	11.1	125
34	Development of Manganese-Based Nanoparticles as Contrast Probes for Magnetic Resonance Imaging. Theranostics, 2012, 2, 45-54.	4.6	123
35	Human serum albumin coated iron oxide nanoparticles for efficient celllabeling. Chemical Communications, 2010, 46, 433-435.	2.2	112
36	Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology, 2008, 19, 165101.	1.3	108

#	Article	IF	CITATIONS
37	Hybrid Ferritin Nanoparticles as Activatable Probes for Tumor Imaging. Angewandte Chemie - International Edition, 2011, 50, 1569-1572.	7.2	105
38	Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging. Theranostics, 2014, 4, 1112-1122.	4.6	104
39	Manipulating the Power of an Additional Phase: A Flower-like Auâ^Fe ₃ O ₄ Optical Nanosensor for Imaging Protease Expressions <i>In vivo</i> . ACS Nano, 2011, 5, 3043-3051.	7.3	98
40	Nanoparticles for improving cancer diagnosis. Materials Science and Engineering Reports, 2013, 74, 35-69.	14.8	94
41	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	7.3	86
42	Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery. Theranostics, 2013, 3, 650-657.	4.6	85
43	Nanoparticles to mediate Xâ€rayâ€induced photodynamic therapy and Cherenkov radiation photodynamic therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1541.	3.3	79
44	Magnetic Nanoparticle-Based Theranostics. Theranostics, 2012, 2, 122-124.	4.6	78
45	NaCl Nanoparticles as a Cancer Therapeutic. Advanced Materials, 2019, 31, e1904058.	11.1	74
46	Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale, 2014, 6, 2073.	2.8	70
47	Nanoparticles Encapsulating Nitrosylated Maytansine To Enhance Radiation Therapy. ACS Nano, 2020, 14, 1468-1481.	7.3	69
48	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	2.8	61
49	Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. Journal of Applied Physics, 2008, 103, .	1.1	60
50	Fe ₅ C ₂ Nanoparticles with High MRI Contrast Enhancement for Tumor Imaging. Small, 2014, 10, 1245-1249.	5.2	58
51	Mesoporous Silica as Nanoreactors to Prepare Gdâ€Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties. Advanced Functional Materials, 2016, 26, 3973-3982.	7.8	58
52	Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. Lab on A Chip, 2017, 17, 2243-2255.	3.1	55
53	Photosensitizer-Encapsulated Ferritins Mediate Photodynamic Therapy against Cancer-Associated Fibroblasts and Improve Tumor Accumulation of Nanoparticles. Molecular Pharmaceutics, 2018, 15, 3595-3599.	2.3	55
54	Molecular Magnetic Resonance Imaging of Angiogenesis In Vivo using Polyvalent Cyclic RGD-Iron Oxide Microparticle Conjugates. Theranostics, 2015, 5, 515-529.	4.6	54

#	Article	lF	CITATIONS
55	Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cellâ€Nucleus Targeting. Chemistry - an Asian Journal, 2008, 3, 548-552.	1.7	50
56	Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8, 10152-10159.	2.8	50
57	Ferritins as nanoplatforms for imaging and drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 1913-1922.	2.4	49
58	Diffusion-Weighted Magnetic Resonance Imaging for Therapy Response Monitoring and Early Treatment Prediction of Photothermal Therapy. ACS Applied Materials & Interfaces, 2016, 8, 5137-5147.	4.0	44
59	Tumor antigen-independent and cell size variation-inclusive enrichment of viable circulating tumor cells. Lab on A Chip, 2019, 19, 1860-1876.	3.1	43
60	Synthesis of Co/MFe2O4 (M=Fe, Mn) core/shell nanocomposite particles. Journal of Solid State Chemistry, 2008, 181, 1560-1564.	1.4	42
61	Polyaspartic acid coated manganese oxide nanoparticles for efficient liver MRI. Nanoscale, 2011, 3, 4943.	2.8	38
62	FAPâ€Targeted Photodynamic Therapy Mediated by Ferritin Nanoparticles Elicits an Immune Response against Cancer Cells and Cancer Associated Fibroblasts. Advanced Functional Materials, 2021, 31, 2007017.	7.8	37
63	Casein-Coated Fe ₅ C ₂ Nanoparticles with Superior r ₂ Relaxivity for Liver-Specific Magnetic Resonance Imaging. Theranostics, 2015, 5, 1225-1232.	4.6	33
64	Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy. Nanoscale, 2015, 7, 10330-10333.	2.8	30
65	Acridine Orange Encapsulated Mesoporous Manganese Dioxide Nanoparticles to Enhance Radiotherapy. Bioconjugate Chemistry, 2020, 31, 82-92.	1.8	27
66	Ferritin nanocages: great potential as clinically translatable drug delivery vehicles?. Nanomedicine, 2013, 8, 1555-1557.	1.7	26
67	Gd and Eu Co-Doped Nanoscale Metal–Organic Framework as a T1–T2 Dual-Modal Contrast Agent for Magnetic Resonance Imaging. Tomography, 2016, 2, 179-187.	0.8	25
68	Nanoparticle Phototherapy in the Era of Cancer Immunotherapy. Trends in Chemistry, 2020, 2, 1082-1095.	4.4	23
69	Nanoconjugates to enhance PDT-mediated cancer immunotherapy by targeting the indoleamine-2,3-dioxygenase pathway. Journal of Nanobiotechnology, 2021, 19, 182.	4.2	23
70	Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer. Journal of Nanobiotechnology, 2021, 19, 284.	4.2	16
71	Ultrathin gold nanowires to enhance radiation therapy. Journal of Nanobiotechnology, 2020, 18, 131.	4.2	15
72	Protein-Adsorbed Magnetic-Nanoparticle-Mediated Assay for Rapid Detection of Bacterial Antibiotic Resistance. Bioconjugate Chemistry, 2017, 28, 890-896.	1.8	14

#	Article	IF	CITATIONS
73	Multiplexed labeling of cellular proteins with split fluorescent protein tags. Communications Biology, 2021, 4, 257.	2.0	13
74	Light-Mediated Deep-Tissue Theranostics. Theranostics, 2016, 6, 2292-2294.	4.6	12
75	Ultrasmall Gd@Cdots as a radiosensitizing agent for non-small cell lung cancer. Nanoscale, 2021, 13, 9252-9263.	2.8	11
76	<p>Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 4691-4703.	3.3	9
77	Cell-type–specific, multicolor labeling of endogenous proteins with split fluorescent protein tags in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
78	Polyaspartic Acid Coated Iron Oxide Nanoprobes for PET/MRI Imaging. Methods in Molecular Biology, 2013, 1025, 225-235.	0.4	9
79	LiF@SiO2 nanocapsules for controlled lithium release and osteoarthritis treatment. Nano Research, 2018, 11, 5751-5760.	5.8	8
80	A Novel PET Probe for Brown Adipose Tissue Imaging in Rodents. Molecular Imaging and Biology, 2020, 22, 675-684.	1.3	8
81	Barium tungstate nanoparticles to enhance radiation therapy against cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102230.	1.7	7
82	Gravity Drawing of Micro―and Nanofibers for Additive Manufacturing of Wellâ€Organized 3Dâ€Nanostructured Scaffolds. Small, 2020, 16, 1907422.	5.2	7
83	Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102074.	1.7	6
84	Gd Carbon Dots: Mesoporous Silica as Nanoreactors to Prepare Gd-Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties (Adv. Funct. Mater. 22/2016). Advanced Functional Materials, 2016, 26, 4036-4036.	7.8	4
85	Multi-parameter MRI to investigate vasculature modulation and photo-thermal ablation combination therapy against cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2179-2189.	1.7	4
86	Nanoscintillator-Based X-Ray-Induced Photodynamic Therapy. Methods in Molecular Biology, 2022, 2394, 811-822.	0.4	4
87	7â€Dehydrocholesterol Encapsulated Polymeric Nanoparticles As a Radiationâ€Responsive Sensitizer for Enhancing Radiation Therapy. Small, 2022, , 2200710.	5.2	4
88	Radiodynamic therapy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. Journal of Nanobiotechnology, 2022, 20, .	4.2	3
89	Molecular Imaging in Early Detection of Cancer. , 2012, , 951-978.		2
90	Composite magnetic nanoparticles: Synthesis and cancer-related applications. Chinese Physics B, 2014, 23, 117504.	0.7	2

IN	X	E

#	Article	IF	CITATIONS
91	Back Cover: Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II)) Tj ETQq1 1 0.784314 rgBT / Angewandte Chemie - International Edition, 2012, 51, 558-558.	Overlock 10 7.2	Tf 50 747 Td (1
92	Chimeric ferritin nanocages-based imaging probes. , 2011, , .		0
93	3Dâ€Nanostructured Scaffolds: Gravity Drawing of Micro―and Nanofibers for Additive Manufacturing of Wellâ€Organized 3Dâ€Nanostructured Scaffolds (Small 11/2020). Small, 2020, 16, 2070056.	5.2	Ο