Alina Gabriela Rusu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660848/publications.pdf

Version: 2024-02-01

567281 454955 35 966 15 30 citations h-index g-index papers 35 35 35 1282 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nanostructured hyaluronic acid-based hydrogels encapsulating synthetic/ natural hybrid nanogels as promising wound dressings. Biochemical Engineering Journal, 2022, 179, 108341.	3.6	16
2	Development of a new polymer network system carrier of essential oils. Biomedicine and Pharmacotherapy, 2022, 149, 112919.	5.6	8
3	Comparative study on the properties of a bio-based copolymacrolactone system. Polymer Testing, 2022, 109, 107555.	4.8	6
4	Synthesis and Comparative Studies of Glucose Oxidase Immobilized on Fe3O4 Magnetic Nanoparticles Using Different Coupling Agents. Nanomaterials, 2022, 12, 2445.	4.1	5
5	New Cryogels Based on Poly(vinyl alcohol) and a Copolymacrolactone System: I-Synthesis and Characterization. Nanomaterials, 2022, 12, 2420.	4.1	6
6	Polymeric Carriers Designed for Encapsulation of Essential Oils with Biological Activity. Pharmaceutics, 2021, 13, 631.	4.5	30
7	Synthesis of Poly(Ethylene Brassylate-Co-squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics, 2021, 13, 477.	4.5	16
8	Alginate enriched with phytic acid for hydrogels preparation. International Journal of Biological Macromolecules, 2021, 181, 561-571.	7. 5	37
9	Paclitaxel-Loaded Magnetic Nanoparticles Based on Biotinylated N-Palmitoyl Chitosan: Synthesis, Characterization and Preliminary In Vitro Studies. Molecules, 2021, 26, 3467.	3.8	9
10	Alginate enriched with phytic acid for hydrogels preparation. Therapeutic applications. International Journal of Biological Macromolecules, 2021, 189, 335-345.	7.5	3
11	New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer. Gels, 2021, 7, 241.	4.5	5
12	New Physical Hydrogels Based on Co-Assembling of FMOC–Amino Acids. Gels, 2021, 7, 208.	4.5	8
13	New Polymeric Particles Loaded With Sea Buckthorn Essential Oil., 2021,,.		O
14	Chitosan Derivatives in Macromolecular Co-assembly Nanogels with Potential for Biomedical Applications. Biomacromolecules, 2020, 21, 4231-4243.	5.4	17
15	Self-Assembled Nanocarriers Based on Modified Chitosan for Biomedical Applications: Preparation and Characterization. Polymers, 2020, 12, 2593.	4.5	11
16	New Trends in Bio-Based Aerogels. Pharmaceutics, 2020, 12, 449.	4.5	103
17	Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2â€Dimethylaminoethyl) Tj ETQq1 1 0.78	84314 rgB ⁻ 4.1	T /Qyerlock 10
18	Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. Journal of Polymers and the Environment, 2020, 28, 1345-1367.	5.0	110

#	Article	IF	Citations
19	Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromolecular Bioscience, 2019, 19, e1900187.	4.1	31
20	Multifunctional hybrid 3D network based on hyaluronic acid and a copolymer containing pendant spiroacetal moieties. International Journal of Biological Macromolecules, 2019, 125, 191-202.	7.5	6
21	New self-healing hydrogels based on reversible physical interactions and their potential applications. European Polymer Journal, 2019, 118, 176-185.	5.4	16
22	Interpenetrated polymer network with modified chitosan in composition and self-healing properties. International Journal of Biological Macromolecules, 2019, 132, 374-384.	7.5	35
23	Nanorobots With Applications in Medicine. , 2019, , 123-149.		9
24	Nanogels Containing Polysaccharides for Bioapplications. , 2019, , 387-420.		10
25	Multifunctional BSA Scaffolds Prepared with a Novel Combination of UVâ€Crosslinking Systems. Macromolecular Chemistry and Physics, 2019, 220, 1900378.	2.2	7
26	Interpenetrating polymer network systems based on poly(dimethylaminoethyl methacrylate) and a copolymer containing pendant spiroacetal moieties. Materials Science and Engineering C, 2018, 87, 22-31.	7.3	16
27	Studies on the nanocomposites based on carboxymethyl starch-g-lactic acid-co-glycolic acid copolymer and magnetite. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1867-1880.	3.6	14
28	Functional and structural analysis of a network containing a polymer structure with spiroacetal moieties and riboflavin as low molecular mass gelator. Materials Chemistry and Physics, 2018, 217, 242-253.	4.0	2
29	Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery, 2017, 24, 539-557.	5 . 7	319
30	Hyaluronic acid gels with tunable properties by conjugating with a synthetic copolymer. Biochemical Engineering Journal, 2017, 125, 135-143.	3.6	22
31	Biocompatible and Biodegradable Hydrogels Based on Chitosan and Gelatin with Potential Applications as Wound Dressings. Journal of Nanoscience and Nanotechnology, 2017, 17, 4584-4591.	0.9	10
32	Tailoring the properties of chitosan-poly(acrylic acid) based hydrogels by hydrophobic monomer incorporation. Materials Letters, 2016, 164, 320-324.	2.6	13
33	Development of novel hydrogels based on citraconyl-chitosan and poly(acrylic acid) as potential wound dressing materials. , 2015, , .		2
34	Thermal behavior of hydrophobically modified hydrogels using TGA/FTIR/MS analysis technique. Thermochimica Acta, 2015, 613, 28-40.	2.7	40
35	Novel semi-interpenetrating polymer networks based on functionalized chitosan and poly(acrylic) Tj ETQq1 1 0.7	784314 rg	BT /Overlock

3