James J O'brien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660811/publications.pdf

Version: 2024-02-01

858243 889612 43 427 12 19 h-index citations g-index papers 43 43 43 200 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Observation and analysis of a new $[14.26]0+ \hat{a} \in X3\hat{L}\hat{a} \in 0+$ transition of WS, observed using intracavity laser spectroscopy with Fourier-transform detection. Journal of Molecular Spectroscopy, 2020, 374, 111378.	0.4	2
2	Intracavity laser spectroscopy with Fourier-transform detection of tungsten sulfide, WS: Analysis of the (1,0) band of the [13.10] ΩÂ=Â1Ââ^'ÂX 3Σâ€"0+ transition. Journal of Molecular Spectroscopy, 2020, 372, 1	P1349.	4
3	Rotational analysis of the [15.1] Aa€³a€ <mml:math altimg="si5.svg" xmins:mml="nttp://www.w3.org/1998/Nath/Nath/NL"><mml:mrow><mml:mover accent="true"><mml:mi>X</mml:mi><mml:mo< mml:mo="" stretchy="true">â¹¼</mml:mo<></mml:mover></mml:mrow></mml:math> 1A′ transition of CuOH and CuOD observed at high resolution with Intracavity laser spectroscopy. Journal of Molecular Spectroscopy,	0.4	O
4	Mass-independent dunham analysis of the [7.7] Y 2Σ+ – X 2Î and [16.3] A 2Σâ~' – X 2Î transitions of copper monoxide, CuO. Journal of Molecular Spectroscopy, 2019, 363, 111173.	0.4	0
5	Mass-independent Dunham analysis of the known electronic states of platinum sulfide, PtS, and analysis of the electronic field-shift effect. Journal of Chemical Physics, 2019, 151, 094303.	1.2	5
6	Mass-independent Dunham analysis of the [13.8] Ω = 3/2 â^³â€¯X 2Î3/2 transition of platinum monochlor observed by intracavity laser spectroscopy: Periodic trends in the M+Xâ^² bonding model (M =â€Ni, Pt; X =â€	ide, PtCl, Ē ō, ∦Tj ETC	ე ნ 0 0 0 rgB1
7	Identification and characterization of two new electronic states of PtF: Analysis of the (2,1), (1,0), (0,0), (0,1), (1,2), and (0,2) bands of the $[15.8\hat{a}\in +\hat{a}\in x]$ $\hat{c}=\hat{a}\in 5/2$ \hat{c}	0.4	6
8	The spin-forbidden <i>a</i> â€^4Σâ^3ê€" <i>X</i> â1/2 transition of GeH detected in absorption using intracavit laser spectroscopy. Journal of Chemical Physics, 2018, 148, 204306.	$y_{1.2}^{}$	11
9	Identification of two new excited electronic states of NiCl: Analyses of the (1,0) & (0,0) bands of the [13.5] $2\hat{1}$ /7/2 \hat{a} \in [0.16] A $2\hat{i}$ "5/2 and (0,0) band of the [13.8] $2\hat{1}$ /1/2 \hat{a} \in [0.38] X $2\hat{1}$ /2 transitions. Journal of Mole Spectroscopy, 2017, 333, 36-41.	colar	0
10	The near-infrared spectrum of NiCl: Analysis of vibrational components of system G and system H between 12,500 cmâ^'1 and 13,750 cmâ^'1. Journal of Molecular Spectroscopy, 2016, 321, 78-81.	0.4	1
11	Near-infrared spectrum of ZrF by intracavity laser absorption spectroscopy. Journal of Molecular Spectroscopy, 2015, 310, 68-71.	0.4	2
12	High resolution electronic spectroscopy of the A $2\hat{1}\hat{2}\hat{a}$ \hat{a} X $2\hat{1}/2$ transition of PtN. Journal of Chemical Physics, 2014, 141, 084304.	1.2	1
13	Reanalysis of the [12.3]2Σâ^'X2Î3/2, [12.3]2Σâ^'X2Î1/2, and [12.3]2Σâ^'B2Σ+ electronic transitions of nickel monochloride, NiCl. Journal of Molecular Spectroscopy, 2013, 292, 5-7.	0.4	3
14	Improved experimental line positions for the (1,1) band of the b $1\hat{1}_{\pm}+\hat{a}\in "X 3\hat{1}_{\pm}\hat{a}"$ transition of O2. Journal of Molecular Spectroscopy, 2012, 273, 34-36.	0.4	3
15	The 5-0 overtone absorption spectrum of HCl. Journal of Molecular Spectroscopy, 2011, 265, 110-111.	0.4	4
16	Intracavity laser absorption spectroscopy of platinum fluoride, PtF. Journal of Molecular Spectroscopy, 2011, 265, 39-46.	0.4	12
17	The Pt2 (1,0) band of System VI in the near infrared by intracavity laser absorption spectroscopy. Journal of Chemical Physics, 2011, 134, 184304.	1.2	2
18	Spectroscopy of NiF by intracavity laser spectroscopy: Identification and analysis of the (1,0) band of the [11.1] 2Î3/2â€"X 2Î3/2 electronic transition. Journal of Molecular Spectroscopy, 2010, 259, 116-119.	0.4	5

#	Article	IF	CITATIONS
19	Intracavity laser absorption spectroscopy of platinum sulfide in the near infrared. Journal of Molecular Spectroscopy, 2010, 263, 78-81.	0.4	6
20	Spectroscopy of PtO by intra-cavity laser spectroscopy: Identification of the A30+ – x1 electronic transition. Journal of Molecular Spectroscopy, 2009, 253, 73-76.	0.4	10
21	Laboratory measurements of the (2,0) B2Δ5/2-X2Δ5/2 transition of nickel hydride using intracavity laser absorption spectroscopy This article is part of a Special Issue on Spectroscopy at the University of New Brunswick in honour of Colan Linton and Ron Lees Canadian Journal of Physics, 2009, 87, 583-587.	0.4	3
22	Intracavity laser absorption spectroscopy of AuO: Identification of the B 2Σâ^–X 2Î3/2 transition. Journal of Molecular Spectroscopy, 2008, 252, 136-142.	0.4	11
23	Intracavity Laser Absorption Spectra of Nickel Hydride. Astrophysical Journal, 2008, 672, 722-725.	1.6	8
24	Intracavity laser absorption spectroscopy of AuO: Identification of the b4Î3/2–X2Î3/2 transition. Journal of Molecular Spectroscopy, 2007, 243, 37-42.	0.4	11
25	Fourier transform spectroscopy of NiCl: Identification of the $[10.3]$ 4 \hat{l} $ 7/2 $ state. Journal of Molecular Spectroscopy, 2006, 240, 64-68.	0.4	7
26	Spectroscopy of NiCl: Identification of the X2Î1/2 state. Journal of Molecular Spectroscopy, 2006, 235, 271-274.	0.4	15
27	Spectroscopy of nickel chloride: Identification of the [15.0] 2Î3/2 and [15.0] 2Δ5/2 states. Journal of Molecular Spectroscopy, 2006, 238, 42-48.	0.4	5
28	Laboratory Measurements of NiH by Intracavity Laser Absorption Spectroscopy. Astrophysical Journal, 2005, 621, 554-556.	1.6	16
29	Fourier transform spectroscopy of NiCl: identification of a [9.1] state. Journal of Molecular Spectroscopy, 2004, 225, 225-229.	0.4	17
30	Spectroscopy of AuO:Â Identification of the [10.7] Î3/2toX2Î3/2Transition. Journal of Physical Chemistry A, 2004, 108, 11302-11306.	1.1	23
31	Fourier Transform and Intracavity Laser Spectroscopy of NiCl System H: Identification of a [12.3] $2\hat{L}$ + State. Journal of Molecular Spectroscopy, 2002, 211, 93-98.	0.4	30
32	Intracavity Laser Spectroscopy of NiCl System G: Identification of a [13.0] 2Î3/2 State. Journal of Molecular Spectroscopy, 2002, 211, 248-253.	0.4	32
33	Absorption spectra and absorption coefficients for methane in the 750– region obtained by intracavity laser spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 75, 323-350.	1.1	25
34	Molecular Constants for the $v=0$, $b1\hat{1}\pm g+Excited$ State of O2: Improved Values Derived from Measurements of the Oxygen A-Band Using Intracavity Laser Spectroscopy. Journal of Molecular Spectroscopy, 2001, 207, 99-103.	0.4	26
35	The Near-Infrared Transition of CuCl Observed by Intracavity Laser Spectroscopy. Journal of Molecular Spectroscopy, 2000, 199, 100-108.	0.4	25
36	Quantitative Intracavity Laser Spectroscopy Measurements with a Ti:sapphire Laser: Absorption Intensities for Water Vapor Lines in the 790–800 nm Region. Journal of Molecular Spectroscopy, 1998, 192, 386-393.	0.4	30

#	Article	IF	CITATIONS
37	Intracavity laser absorption measurements at ultrahigh spectral resolution. Applied Optics, 1997, 36, 4062.	2.1	7
38	Absorption coefficients for the 727 nm band of methane at 77 K determined by intracavity laser spectroscopy. Astrophysics and Space Science, 1996, 236, 97-109.	0.5	5
39	Temperature and population measurements of $n=2$ hydrogen atoms in H2RF discharges from Hα (Balmer) spectral profiles obtained by intracavity laser spectroscopy. Chemical Physics, 1995, 192, 355-365.	0.9	3
40	Laboratory measurements of absorption coefficients for the 727 nm band of methane at 77 K and comparison with results derived from spectra of the Giant planets. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 54, 607-619.	1.1	19
41	$\hat{Hl\pm}$ (Balmer) spectral profiles obtained from H2 rf plasma discharges studied by intracavity laser spectroscopy. Chemical Physics Letters, 1994, 227, 1-5.	1.2	4
42	Intensity measurements of methane lines in the 727 nm band studied by intracavity laser spectroscopy at temperatures down to 77 K. Chemical Physics Letters, 1994, 229, 29-34.	1.2	9
43	Measurement of pressure-broadening and lineshift coefficients at 77 and 296 K of methane lines in the 727 NM band using intracavity laser spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 75-87.	1.1	14