Antonio Quesada

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6660782/antonio-quesada-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

134 4,111 36 57 g-index

138 4,874 4.6 5.43 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
134	Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia) <i>Environmental Science and Pollution Research</i> , 2022 , 29, 27624	5.1	
133	Marine Vertebrates Impact the Bacterial Community Composition and Food Webs of Antarctic Microbial Mats <i>Frontiers in Microbiology</i> , 2022 , 13, 841175	5.7	0
132	Functional Metabolic Diversity of Bacterioplankton in Maritime Antarctic Lakes. <i>Microorganisms</i> , 2021 , 9,	4.9	2
131	Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. <i>Science of the Total Environment</i> , 2021 , 761, 143197	10.2	8
130	The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. <i>Biogeosciences</i> , 2021 , 18, 993-1007	4.6	1
129	Heterogeneity of Microbial Communities in Soils From the Antarctic Peninsula Region. <i>Frontiers in Microbiology</i> , 2021 , 12, 628792	5.7	4
128	Local meteorological conditions, shape and desiccation influence dispersal capabilities for airborne microorganisms. <i>Science of the Total Environment</i> , 2021 , 780, 146653	10.2	4
127	Characterization of the summer surface mesoscale dynamics at Dome F, Antarctica. <i>Atmospheric Research</i> , 2021 , 259, 105699	5.4	0
126	Microbial colonizers of microplastics in an Arctic freshwater lake. <i>Science of the Total Environment</i> , 2021 , 795, 148640	10.2	7
125	Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. <i>Catalysts</i> , 2020 , 10, 1250	4	3
124	First detection of microplastics in the freshwater of an Antarctic Specially Protected Area. <i>Marine Pollution Bulletin</i> , 2020 , 161, 111811	6.7	27
123	Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. <i>Science of the Total Environment</i> , 2020 , 722, 137904	10.2	74
122	Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay. <i>Chemosphere</i> , 2020 , 240, 124966	8.4	7
121	Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. <i>Polar Biology</i> , 2019 , 42, 2131-2145	2	6
120	Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. <i>Frontiers in Microbiology</i> , 2019 , 10, 908	5.7	14
119	Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO. <i>Water Research</i> , 2019 , 163, 114853	12.5	18
118	Carbon Pathways Through the Food Web of a Microbial Mat From Byers Peninsula, Antarctica. <i>Frontiers in Microbiology</i> , 2019 , 10, 628	5.7	5

(2016-2019)

Weather Observations of Remote Polar Areas Using an AWS Onboard a Unique Zero-Emissions Polar Vehicle. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 1891-1895	6.1	3	
Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. <i>Science of the Total Environment</i> , 2019 , 665, 367-378	10.2	21	
Global patterns and drivers of ecosystem functioning in rivers and riparian zones. <i>Science Advances</i> , 2019 , 5, eaav0486	14.3	70	
Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation. <i>Harmful Algae</i> , 2019 , 81, 77-85	5.3	5	
Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. <i>Harmful Algae</i> , 2018 , 71, 19-28	5.3	17	
Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach. <i>Polar Science</i> , 2017 , 11, 72-82	2.3	6	
Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria 2017, 46-69		6	
Case Studies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria 2017 , 70-83		1	
Trophic interactions in microbial mats on Byers Peninsula, maritime Antarctica. <i>Polar Biology</i> , 2017 , 40, 1115-1126	2	10	
Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. <i>Astrobiology</i> , 2017 , 17, 984-996	3.7	12	
Toxic cyanobacteria and cyanotoxins in European waters I recent progress achieved through the CYANOCOST Action and challenges for further research. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	39	
Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. <i>Water Research</i> , 2017 , 125, 52-61	12.5	53	
Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. <i>Marine Drugs</i> , 2017 , 15,	6	44	
Temperature Influences the Production and Transport of Saxitoxin and the Expression of sxt Genes in the Cyanobacterium Aphanizomenon gracile. <i>Toxins</i> , 2017 , 9,	4.9	11	
Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. <i>Frontiers in Ecology and Evolution</i> , 2017 , 5,	3.7	27	
Introduction to the special issue on the Life in Antarctica: Boundaries and Gradients in a Changing Environment (XIth SCAR Biology Symposium). <i>Polar Biology</i> , 2016 , 39, 1-10	2	18	
Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake. <i>Ecological Modelling</i> , 2016 , 319, 21-30	3	9	
Presence or Absence of mlr Genes and Nutrient Concentrations Co-Determine the Microcystin Biodegradation Efficiency of a Natural Bacterial Community. <i>Toxins</i> , 2016 , 8,	4.9	29	
	Polar Vehicle. <i>Bulletin of the American Meteorological Society</i> , 2019, 100, 1891-1895 Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. <i>Science of the Total Environment</i> , 2019, 665, 367-378 Global patterns and drivers of ecosystem functioning in rivers and riparian zones. <i>Science Advances</i> , 2019, 5, eaav0486 Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation. <i>Harmful Algae</i> , 2019, 81, 77-85 Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. <i>Harmful Algae</i> , 2018, 71, 19-28 Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach. <i>Polar Science</i> , 2017, 11, 72-82 Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria 2017, 46-69 Case Studies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria 2017, 70-83 Trophic interactions in microbial mats on Byers Peninsula, maritime Antarctica. <i>Polar Biology</i> , 2017, 40, 1115-1126 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. <i>Astrobiology</i> , 2017, 17, 984-996 Toxic cyanobacteria and cyanotoxins in European waters (Eecent progress achieved through the CYANOCOST Action and challenges for further research. <i>Advances in Oceanography and Limnology</i> , 2017, 8, Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. <i>Water Research</i> , 2017, 125, 52-61 Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. <i>Marine Drugs</i> , 2017, 15, Temperature Influences the Production and Transport of Saxitoxin and	Dolar Vehicle. Bulletin of the American Meteorological Society, 2019, 100, 1891-1895 Unmasking the identity of toxigenic cyanobacterial driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Science of the Total Environment, 2019, 665, 367-378 Clobal patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486 Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation. Harmful Algae, 2019, 81, 77-85 Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. Harmful Algae, 2018, 71, 19-28 Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach. Palar Science, 2017, 11, 72-82 Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria 2017, 46-69 Case Studies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria 2017, 70-83 Trophic interactions in microbial mats on Byers Peninsula, maritime Antarctica. Palar Biology, 2017, 40, 1115-1126 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-995 Toxic cyanobacteria and cyanotoxins in European waters Becent progress achieved through the CYANOCOST Action and challenges for further research. Advances in Oceanography and Limnology, 2017, 8, 2017, 8, 2017, 8, 2017, 8, 2017, 8, 2017, 9, 2017, 12, 2017, 125, 52-61 Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Marine Drugs, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 15, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 201	Polar Vehicle. Bulletin of the American Meteorological Society, 2019, 100, 1891-1895 Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 165 rRNA metabarcoding. Science of the Total Environment, 2019, 665, 367-378 Clobal patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486 Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation. Harmful Algae, 2019, 81, 77-85 Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. Harmful Algae, 2018, 71, 19-28 Plankton assembly in an ultra-oligotrophic Antarctic take over the summer transition from the ice-cover to ice-free period: A size spectra approach. Polar Science, 2017, 11, 72-82 Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria 2017, 46-69 Case Studies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria 2017, 70-83 Trophic interactions in microbial mats on Byers Peninsula, maritime Antarctica. Polar Biology, 2017, 40, 1115-1126 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummifred Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-996 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummifred Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-996 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummifred Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-996 Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummifred Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-996 Critical Assessment of Analytical Techniques in th

99	Aerobiology Over Antarctica - A New Initiative for Atmospheric Ecology. <i>Frontiers in Microbiology</i> , 2016 , 7, 16	5.7	35
98	Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. <i>Scientific Reports</i> , 2016 , 6, 22954	4.9	11
97	Selectivity and detrimental effects of epiphytic Pseudanabaena on Microcystis colonies. <i>Hydrobiologia</i> , 2016 , 777, 139-148	2.4	12
96	Metagenomic analysis of lacustrine viral diversity along a latitudinal transect of the Antarctic Peninsula. <i>FEMS Microbiology Ecology</i> , 2016 , 92, fiw074	4.3	17
95	Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. <i>Biodiversity and Conservation</i> , 2015 , 24, 889-908	3.4	94
94	Microstructure and cyanobacterial composition of microbial mats from the High Arctic. <i>Biodiversity and Conservation</i> , 2015 , 24, 841-863	3.4	23
93	Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. <i>Biodiversity and Conservation</i> , 2015 , 24, 819-840	3.4	46
92	Total mercury and methyl-mercury contents and accumulation in polar microbial mats. <i>Science of the Total Environment</i> , 2015 , 509-510, 145-53	10.2	12
91	CYANOCHIP: an antibody microarray for high-taxonomical-resolution cyanobacterial monitoring. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16
90	The spatial structure of Antarctic biodiversity. <i>Ecological Monographs</i> , 2014 , 84, 203-244	9	203
89	Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. <i>Water Research</i> , 2014 , 63, 10-20	12.5	11
88	Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing nostocales cyanobacteria from mediterranean europe (Spain). <i>Applied and Environmental Microbiology</i> , 2014 , 80, 1359-70	4.8	58
87	Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. <i>Harmful Algae</i> , 2014 , 37, 28-37	5.3	47
86	Seasonal dynamics and sedimentation patterns of Microcystis oligopeptide-based chemotypes reveal subpopulations with different ecological traits. <i>Limnology and Oceanography</i> , 2014 , 59, 861-871	4.8	18
85	Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. <i>Antarctic Science</i> , 2014 , 26, 521-532	1.7	52
84	Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. <i>Toxins</i> , 2014 , 6, 1929-50	4.9	34
83			
	Temperature-dependent dispersal strategies of Aphanizomenon ovalisporum (Nostocales, Cyanobacteria): implications for the annual life cycle. <i>Microbial Ecology</i> , 2013 , 65, 12-21	4.4	18

(2013-2013)

81	Community structure and photosynthetic activity of benthic biofilms from a waterfall in the maritime Antarctica. <i>Polar Biology</i> , 2013 , 36, 1709-1722	2	8
80	Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. <i>Journal of Plankton Research</i> , 2013 , 35, 1254-1266	2.2	42
79	Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. <i>Aquatic Toxicology</i> , 2013 , 130-131, 9-17	5.1	24
78	Minimum population size estimates demonstrate an increase in southern elephant seals (Mirounga leonina) on Livingston Island, maritime Antarctica. <i>Polar Biology</i> , 2013 , 36, 607-610	2	12
77	A review of scientific research trends within ASPA No. 126 Byers Peninsula, South Shetland Islands, Antarctica. <i>Antarctic Science</i> , 2013 , 25, 128-145	1.7	16
76	Rapid denudation processes in cryptogamic communities from Maritime Antarctica subjected to human trampling. <i>Antarctic Science</i> , 2013 , 25, 318-328	1.7	21
75	Ecological relationships and stoichiometry within a Maritime Antarctic watershed. <i>Antarctic Science</i> , 2013 , 25, 191-197	1.7	10
74	Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability. <i>Antarctic Science</i> , 2013 , 25, 254-269	1.7	12
73	Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. <i>Antarctic Science</i> , 2013 , 25, 219-228	1.7	18
72	Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. <i>Antarctic Science</i> , 2013 , 25, 167-180	1.7	30
71	Distribution and reproductive capacity of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. <i>Antarctic Science</i> , 2013 , 25, 292-30	0 2 7	13
70	Sedimentation patterns of toxin-producing Microcystis morphospecies in freshwater reservoirs. <i>Toxins</i> , 2013 , 5, 939-57	4.9	18
69	Distribution and ecology of chironomids (Diptera, Chironomidae) on Byers Peninsula, Maritime Antarctica. <i>Antarctic Science</i> , 2013 , 25, 288-291	1.7	10
68	Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. <i>Antarctic Science</i> , 2013 , 25, 146-156	1.7	60
67	Limited stability of microcystins in oligopeptide compositions of Microcystis aeruginosa (Cyanobacteria): implications in the definition of chemotypes. <i>Toxins</i> , 2013 , 5, 1089-1104	4.9	15
66	Potassium deficiency triggers the development of dormant cells (akinetes) in Aphanizomenon ovalisporum (Nostocales, Cyanoprokaryota)(1). <i>Journal of Phycology</i> , 2013 , 49, 580-7	3	18
65	Heterogeneous vertical structure of the bacterioplankton community in a non-stratified Antarctic lake. <i>Antarctic Science</i> , 2013 , 25, 229-238	1.7	16
64	Structure of planktonic microbial communities along a trophic gradient in lakes of Byers Peninsula, South Shetland Islands. <i>Antarctic Science</i> , 2013 , 25, 277-287	1.7	14

63	Vertical structure of bi-layered microbial mats from Byers Peninsula, Maritime Antarctica. <i>Antarctic Science</i> , 2013 , 25, 270-276	1.7	13
62	Multidisciplinary research on Byers Peninsula, Livingston Island: a future benchmark for change in Maritime Antarctica. <i>Antarctic Science</i> , 2013 , 25, 123-127	1.7	9
61	Environmental management of a scientific field camp in Maritime Antarctica: reconciling research impacts with conservation goals in remote ice-free areas. <i>Antarctic Science</i> , 2013 , 25, 307-317	1.7	14
60	Long-term studies: lessons from Byers Peninsula. <i>Antarctic Science</i> , 2013 , 25, 121-121	1.7	3
59	First TaqMan Assay to Identify and Quantify the Cylindrospermopsin-Producing Cyanobacterium & lt;/i> Aphanizomenon ovalisporum</i> in Water. <i>Advances in Microbiology</i> , 2013 , 03, 430-437	0.6	10
58	Cyanobacteria in the Cryosphere: Snow, Ice and Extreme Cold 2012 , 387-399		28
57	Multi-scale strategies for the monitoring of freshwater cyanobacteria: reducing the sources of uncertainty. <i>Water Research</i> , 2012 , 46, 3043-53	12.5	44
56	Invasion of Nostocales (cyanobacteria) to Subtropical and Temperate Freshwater Lakes - Physiological, Regional, and Global Driving Forces. <i>Frontiers in Microbiology</i> , 2012 , 3, 86	5.7	136
55	Temperature-related changes in polar cyanobacterial mat diversity and toxin production. <i>Nature Climate Change</i> , 2012 , 2, 356-360	21.4	63
54	Cyanobacteria in High Latitude Lakes, Rivers and Seas 2012 , 371-385		34
53	Cyanobacterial heterocyst glycolipids in cultures and environmental samples: Diversity and biomarker potential. <i>Limnology and Oceanography</i> , 2012 , 57, 1775-1788	4.8	30
52	Trampling on maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct?. <i>Polar Research</i> , 2012 , 31, 10888	2	19
51	Maritime antarctic lakes as sentinels of climate change. <i>International Journal of Design and Nature and Ecodynamics</i> , 2012 , 7, 239-250	2.3	7
50	First detection of cyanobacterial PSP (paralytic shellfish poisoning) toxins in Spanish freshwaters. <i>Toxicon</i> , 2011 , 57, 918-21	2.8	28
49	Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. <i>Harmful Algae</i> , 2011 , 10, 668-675	5.3	40
48	Long-term ecosystem networks to record change: an international imperative. <i>Antarctic Science</i> , 2011 , 23, 209-209	1.7	14
47	Importance of natural sedimentation in the fate of microcystins. <i>Chemosphere</i> , 2011 , 82, 1141-6	8.4	30

(2006-2010)

45	Revision of the genus Hantzschia (Bacillariophyceae) on Livingston Island (South Shetland Islands, Southern Atlantic Ocean). <i>Plant Ecology and Evolution</i> , 2010 , 143, 318-333	1.6	17
44	Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. <i>Environmental Science & Environmental Science & Environment</i>	10.3	102
43	Interannual meteorological variability and its effects on a lake from maritime Antarctica. <i>Polar Biology</i> , 2010 , 33, 1615-1628	2	26
42	A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. <i>International Microbiology</i> , 2010 , 13, 67-77	3	25
41	Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Aphanizomenon. <i>Journal of Plankton Research</i> , 2009 , 31, 465-480	2.2	49
40	Advances in solid phase extraction of the cyanobacterial toxin cylindrospermopsin. <i>Limnology and Oceanography: Methods</i> , 2009 , 7, 568-575	2.6	26
39	Modeling lakes and reservoirs in the climate system. <i>Limnology and Oceanography</i> , 2009 , 54, 2315-2329	4.8	80
38	High diversity of the viral community from an Antarctic lake. <i>Science</i> , 2009 , 326, 858-61	33.3	313
37	Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. <i>Polar Science</i> , 2009 , 3, 181-187	2.3	38
36	AN UNUSUAL SPINE-BEARING PINNULARIA SPECIES FROM THE ANTARCTIC LIVINGSTON ISLAND (SOUTH SHETLAND ISLANDS). <i>Diatom Research</i> , 2009 , 24, 431-441	0.9	12
35	Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. <i>Antarctic Science</i> , 2009 , 21, 229-236	1.7	36
34	Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. <i>Harmful Algae</i> , 2008 , 7, 206-213	5.3	85
33	Benthic primary production in polar lakes and rivers 2008 , 179-196		41
32	Anatoxin-a occurrence and potential cyanobacterial anatoxin-a producers in Spanish reservoirs1. Journal of Phycology, 2007 , 43, 1120-1125	3	26
31	Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). <i>FEMS Microbiology Ecology</i> , 2007 , 59, 377-85	4.3	62
30	Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?. <i>FEMS Microbiology Ecology</i> , 2007 , 59, 396-408	4.3	50
29	Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. <i>Polar Biology</i> , 2007 , 30, 635-649	2	126
28	Incorporation of different N sources and light response curves of nitrogenase and photosynthesis by cyanobacterial blooms from rice fields. <i>Microbial Ecology</i> , 2006 , 51, 394-403	4.4	12

27	Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: microcystins in the Madrid area. <i>European Journal of Phycology</i> , 2006 , 41, 281-291	2.2	36
26	Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. <i>European Journal of Phycology</i> , 2006 , 41, 39-45	2.2	83
25	Inland Water Quality Assessment - A Joint European Masters Programme. <i>Journal of Science Education and Technology</i> , 2006 , 15, 409-415	2.8	
24	Phylogenetic and morphological analyses of Microcystis strains (Cyanophyta/Cyanobacteria) from a Spanish water reservoir. <i>Nova Hedwigia</i> , 2005 , 81, 431-448	1.3	14
23	Development of cyanobacterial blooms in Valencian rice fields. <i>Biology and Fertility of Soils</i> , 2005 , 41, 129-133	6.1	5
22	The genus Microcystis (Microcystaceae/Cyanobacteria) from a Spanish reservoir: A contribution to the definition of morphological variations. <i>Nova Hedwigia</i> , 2004 , 79, 479-495	1.3	12
21	Epiphytic cyanobacteria on Chara vulgaris are the main contributors to N(2) fixation in rice fields. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5391-7	4.8	30
20	Noninvasive pigment identification in single cells from living phototrophic biofilms by confocal imaging spectrofluorometry. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3745-50	4.8	37
19	Measurement of coupled nitrification-denitrification in paddy fields affected by Terrazole, a nitrification inhibitor. <i>Biology and Fertility of Soils</i> , 2004 , 39, 186-192	6.1	18
18	Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 569-80	4.8	104
17	Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. <i>Biology and Fertility of Soils</i> , 2003 , 39, 80-87	6.1	34
16	Heterotrophic capability of a metalimnetic plankton population in saline Lake Shira (Siberia, Khakasia). <i>Aquatic Ecology</i> , 2002 , 36, 219-227	1.9	5
15	N2-Fixation in Cyanobacterial Mats from Ponds on the McMurdo Ice Shelf, Antarctica. <i>Microbial Ecology</i> , 2001 , 42, 338-349	4.4	51
14	Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. <i>FEMS Microbiology Ecology</i> , 1999 , 28, 315-323	4.3	73
13	Acclimation of Cyanobacterial Communities in Rice Fields and Response of Nitrogenase Activity to Light Regime. <i>Microbial Ecology</i> , 1998 , 35, 147-55	4.4	21
12	Short- and long-term effects of ammonium on photodependent nitrogen fixation in wetland rice fields of Spain. <i>Biology and Fertility of Soils</i> , 1997 , 24, 353-357	6.1	6
11	Environmental Factors Controlling N2 Fixation in Mediterranean Rice Fields. <i>Microbial Ecology</i> , 1997 , 34, 39-48	4.4	27
10	Relationship Between Abundance of N2-fixing Cyanobacteria and Environmental Features of Spanish Rice Fields. <i>Microbial Ecology</i> , 1996 , 32, 59-71	4.4	16

LIST OF PUBLICATIONS

9	Seasonal variation of chemical properties of rice field soils from Valencia, Spain. <i>Communications in Soil Science and Plant Analysis</i> , 1995 , 26, 1-19	1.5	7
8	GROWTH OF ANTARCTIC CYANOBACTERIA UNDER ULTRAVIOLET RADIATION: UVA COUNTERACTS UVB INHIBITION1. <i>Journal of Phycology</i> , 1995 , 31, 242-248	3	112
7	Seasonal variations in the physical and chemical characteristics of a shallow water ecosystem, the ricefields of Valencia, Spain. <i>Archiv Fil Hydrobiologie</i> , 1995 , 132, 495-511		5
6	Ultraviolet radiation effects on cyanobacteria: Implications for Antarctic microbial ecosystems. Antarctic Research Series, 1994 , 111-124		56
5	Adaptation of cyanobacteria to the light regime within Antarctic microbial mats. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , 1993 , 25, 960-965		3
4	New incubation device forin situ measurement of acetylene-reducing activity in ricefields. <i>Journal of Applied Phycology</i> , 1989 , 1, 195-200	3.2	11
3	Sodium Requirement for Photosynthesis and Nitrate Assimilation in a Mutant of Nostoc muscorum. Journal of Plant Physiology, 1987 , 127, 423-429	3.6	13
2	Response of endolithic Chroococcidiopsis strains from the polyextreme Atacama Desert to light radiation	on	1
1	Global Change Effects on Antarctic Freshwater Ecosystems: The Case of Maritime Antarctic Lakes367-3	82	1