
Antonio Quesada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Diversity of the Viral Community from an Antarctic Lake. Science, 2009, 326, 858-861.	6.0	392
2	The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014, 84, 203-244.	2.4	286
3	Invasion of Nostocales (cyanobacteria) to Subtropical and Temperate Freshwater Lakes – Physiological, Regional, and Global Driving Forces. Frontiers in Microbiology, 2012, 3, 86.	1.5	183
4	Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biology, 2007, 30, 635-649.	0.5	146
5	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	4.7	133
6	Microstructural Characterization of Cyanobacterial Mats from the McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology, 2004, 70, 569-580.	1.4	131
7	Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodiversity and Conservation, 2015, 24, 889-908.	1.2	131
8	GROWTH OF ANTARCTIC CYANOBACTERIA UNDER ULTRAVIOLET RADIATION: UVA COUNTERACTS UVB INHIBITION1. Journal of Phycology, 1995, 31, 242-248.	1.0	126
9	Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Science of the Total Environment, 2020, 722, 137904.	3.9	119
10	Natural Photodegradation of the Cyanobacterial Toxins Microcystin and Cylindrospermopsin. Environmental Science & Technology, 2010, 44, 3002-3007.	4.6	118
11	Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Research, 2017, 125, 52-61.	5.3	111
12	Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae, 2008, 7, 206-213.	2.2	101
13	Modeling lakes and reservoirs in the climate system. Limnology and Oceanography, 2009, 54, 2315-2329.	1.6	101
14	Toxicity ofAphanizomenon ovalisporum(Cyanobacteria) in a Spanish water reservoir. European Journal of Phycology, 2006, 41, 39-45.	0.9	94
15	Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiology Ecology, 1999, 28, 315-323.	1.3	88
16	Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nature Climate Change, 2012, 2, 356-360.	8.1	81
17	Ultraviolet radiation effects on cyanobacteria: Implications for Antarctic microbial ecosystems. Antarctic Research Series, 1994, , 111-124.	0.2	80
18	First detection of microplastics in the freshwater of an Antarctic Specially Protected Area. Marine Pollution Bulletin, 2020, 161, 111811.	2.3	76

#	Article	IF	CITATIONS
19	Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 2013, 25, 146-156.	0.5	74
20	Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 2007, 59, 377-385.	1.3	73
21	Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Marine Drugs, 2017, 15, 233.	2.2	68
22	Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 2015, 24, 819-840.	1.2	66
23	Aerobiology Over Antarctica – A New Initiative for Atmospheric Ecology. Frontiers in Microbiology, 2016, 7, 16.	1.5	65
24	Toxic cyanobacteria and cyanotoxins in European waters – recent progress achieved through the CYANOCOST Action and challenges for further research. Advances in Oceanography and Limnology, 2017, 8, .	0.2	64
25	Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarctic Science, 2014, 26, 521-532.	0.5	63
26	Phylogeography of Cylindrospermopsin and Paralytic Shellfish Toxin-Producing Nostocales Cyanobacteria from Mediterranean Europe (Spain). Applied and Environmental Microbiology, 2014, 80, 1359-1370.	1.4	63
27	N2-Fixation in Cyanobacterial Mats from Ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecology, 2001, 42, 338-349.	1.4	58
28	Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?. FEMS Microbiology Ecology, 2007, 59, 396-408.	1.3	56
29	Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Aphanizomenon. Journal of Plankton Research, 2009, 31, 465-480.	0.8	54
30	Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. Journal of Plankton Research, 2013, 35, 1254-1266.	0.8	53
31	Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae, 2014, 37, 28-37.	2.2	53
32	Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae, 2011, 10, 668-675.	2.2	51
33	Multi-scale strategies for the monitoring of freshwater cyanobacteria: Reducing the sources of uncertainty. Water Research, 2012, 46, 3043-3053.	5.3	51
34	Presence or Absence of mlr Genes and Nutrient Concentrations Co-Determine the Microcystin Biodegradation Efficiency of a Natural Bacterial Community. Toxins, 2016, 8, 318.	1.5	51
35	Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	51
36	Oligopeptides as Biomarkers of Cyanobacterial Subpopulations. Toward an Understanding of Their Biological Role. Toxins, 2014, 6, 1929-1950.	1.5	50

#	Article	IF	CITATIONS
37	Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. Polar Science, 2009, 3, 181-187.	0.5	48
38	Benthic primary production in polar lakes and rivers. , 2008, , 179-196.		48
39	Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarctic Science, 2009, 21, 229-236.	0.5	43
40	Cyanobacteria in the Cryosphere: Snow, Ice and Extreme Cold. , 2012, , 387-399.		42
41	Cyanobacteria in High Latitude Lakes, Rivers and Seas. , 2012, , 371-385.		42
42	Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 2013, 25, 167-180.	0.5	41
43	Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. Biology and Fertility of Soils, 2003, 39, 80-87.	2.3	40
44	Cyanobacterial heterocyst glycolipids in cultures and environmental samples: Diversity and biomarker potential. Limnology and Oceanography, 2012, 57, 1775-1788.	1.6	40
45	Epiphytic Cyanobacteria on Chara vulgaris Are the Main Contributors to N 2 Fixation in Rice Fields. Applied and Environmental Microbiology, 2004, 70, 5391-5397.	1.4	39
46	Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biology, 2011, 34, 1045-1055.	0.5	39
47	Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: microcystins in the Madrid area. European Journal of Phycology, 2006, 41, 281-291.	0.9	38
48	Noninvasive Pigment Identification in Single Cells from Living Phototrophic Biofilms by Confocal Imaging Spectrofluorometry. Applied and Environmental Microbiology, 2004, 70, 3745-3750.	1.4	37
49	Importance of natural sedimentation in the fate of microcystins. Chemosphere, 2011, 82, 1141-1146.	4.2	37
50	Selectivity and detrimental effects of epiphytic Pseudanabaena on Microcystis colonies. Hydrobiologia, 2016, 777, 139-148.	1.0	37
51	Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Science of the Total Environment, 2019, 665, 367-378.	3.9	36
52	Microbial colonizers of microplastics in an Arctic freshwater lake. Science of the Total Environment, 2021, 795, 148640.	3.9	35
53	Environmental Factors Controlling N2 Fixation in Mediterranean Rice Fields. Microbial Ecology, 1997, 34, 39-48.	1.4	33
54	Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biology, 2010, 33, 1615-1628.	0.5	32

#	Article	IF	CITATIONS
55	Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. Aquatic Toxicology, 2013, 130-131, 9-17.	1.9	32
56	A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. International Microbiology, 2010, 13, 67-77.	1.1	32
57	Anatoxinâ€a occurrence and potential cyanobacterial anatoxinâ€a producers in Spanish reservoirs ¹ . Journal of Phycology, 2007, 43, 1120-1125.	1.0	31
58	First detection of cyanobacterial PSP (paralytic shellfish poisoning) toxins in Spanish freshwaters. Toxicon, 2011, 57, 918-921.	0.8	31
59	Revision of the genus Hantzschia (Bacillariophyceae) on Livingston Island (South Shetland Islands,) Tj ETQq1 1 ().784314 r 0.3	gBJ /Overloci
60	Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodiversity and Conservation, 2015, 24, 841-863.	1.2	30
61	Degradation of widespread cyanotoxins with high impact in drinking water (microcystins,) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf <mark>5</mark> (
62	Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, 2021, 761, 143197.	3.9	30
63	Plant communities as a key factor in biogeochemical processes involving micronutrients (Fe, Mn, Co,) Tj ETQq1	1 0 <u>,78</u> 4314	4 rgBT /Overle
64	Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. Harmful Algae, 2018, 71, 19-28.	2.2	28
65	Advances in solid phase extraction of the cyanobacterial toxin cylindrospermopsin. Limnology and Oceanography: Methods, 2009, 7, 568-575.	1.0	27
66	Metagenomic analysis of lacustrine viral diversity along a latitudinal transect of the Antarctic Peninsula. FEMS Microbiology Ecology, 2016, 92, fiw074.	1.3	26
67	Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. Frontiers in Microbiology, 2019, 10, 908.	1.5	26
68	Relationship between abundance of N2-fixing cyanobacteria and environmental features of Spanish rice fields. Microbial Ecology, 1996, 32, 59-71.	1.4	25
69	Rapid denudation processes in cryptogamic communities from Maritime Antarctica subjected to human trampling. Antarctic Science, 2013, 25, 318-328.	0.5	25
70	Sedimentation Patterns of Toxin-Producing Microcystis Morphospecies in Freshwater Reservoirs. Toxins, 2013, 5, 939-957.	1.5	24
71	Potassium deficiency triggers the development of dormant cells (akinetes) in <i><scp>A</scp>phanizomenon ovalisporum</i> (Nostocales, Cyanoprokaryota) ¹ . Journal of Phycology, 2013, 49, 580-587.	1.0	24
72	Acclimation of Cyanobacterial Communities in Rice Fields and Response of Nitrogenase Activity to Light Regime. Microbial Ecology, 1998, 35, 147-155.	1.4	23

#	Article	IF	CITATIONS
73	Trampling on maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct?. Polar Research, 2012, 31, 10888.	1.6	23
74	Phylogeographic analysis of filterable bacteria with special reference to <i>Rhizobiales</i> strains that occur in cryospheric habitats. Antarctic Science, 2013, 25, 219-228.	0.5	22
75	Temperature Influences the Production and Transport of Saxitoxin and the Expression of sxt Genes in the Cyanobacterium Aphanizomenon gracile. Toxins, 2017, 9, 322.	1.5	22
76	Seasonal dynamics and sedimentation patterns of Microcystis oligopeptide-based chemotypes reveal subpopulations with different ecological traits. Limnology and Oceanography, 2014, 59, 861-871.	1.6	21
77	CYANOCHIP: An Antibody Microarray for High-Taxonomical-Resolution Cyanobacterial Monitoring. Environmental Science & Technology, 2015, 49, 1611-1620.	4.6	21
78	Introduction to the special issue on the Life in Antarctica: Boundaries and Gradients in a Changing Environment (XIth SCAR Biology Symposium). Polar Biology, 2016, 39, 1-10.	0.5	21
79	Temperature-Dependent Dispersal Strategies of Aphanizomenon ovalisporum (Nostocales,) Tj ETQq1 1 0.784314	· rgBT /Ov	erlock 10 Tf
80	A review of scientific research trends within ASPA No. 126 Byers Peninsula, South Shetland Islands, Antarctica. Antarctic Science, 2013, 25, 128-145.	0.5	20
81	Measurement of coupled nitrification-denitrification in paddy fields affected by Terrazole, a nitrification inhibitor. Biology and Fertility of Soils, 2004, 39, 186-192.	2.3	19
82	Environmental management of a scientific field camp in Maritime Antarctica: reconciling research impacts with conservation goals in remote ice-free areas. Antarctic Science, 2013, 25, 307-317.	0.5	19
83	Long-term ecosystem networks to record change: an international imperative. Antarctic Science, 2011, 23, 209-209.	0.5	18
84	Heterogeneous vertical structure of the bacterioplankton community in a non-stratified Antarctic lake. Antarctic Science, 2013, 25, 229-238.	0.5	18
85	Vertical structure of bi-layered microbial mats from Byers Peninsula, Maritime Antarctica. Antarctic Science, 2013, 25, 270-276.	0.5	18
86	Trophic interactions in microbial mats on Byers Peninsula, maritime Antarctica. Polar Biology, 2017, 40, 1115-1126.	0.5	18
87	Structure of planktonic microbial communities along a trophic gradient in lakes of Byers Peninsula, South Shetland Islands. Antarctic Science, 2013, 25, 277-287.	0.5	17
88	Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. Astrobiology, 2017, 17, 984-996.	1.5	17
89	Carbon Pathways Through the Food Web of a Microbial Mat From Byers Peninsula, Antarctica. Frontiers in Microbiology, 2019, 10, 628.	1.5	17
90	Heterogeneity of Microbial Communities in Soils From the Antarctic Peninsula Region. Frontiers in Microbiology, 2021, 12, 628792.	1.5	17

#	Article	IF	CITATIONS
91	Sodium Requirement for Photosynthesis and Nitrate Assimilation in a Mutant of Nostoc muscorum. Journal of Plant Physiology, 1987, 127, 423-429.	1.6	16
92	Phylogenetic and morphological analyses of Microcystis strains (Cyanophyta/Cyanobacteria) from a Spanish water reservoir. Nova Hedwigia, 2005, 81, 431-448.	0.2	16
93	Minimum population size estimates demonstrate an increase in southern elephant seals (Mirounga) Tj ETQq1 1 (0.784314 ı 0.5	rgBT /Overloc
94	Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes. Toxins, 2013, 5, 1089-1104.	1.5	16
95	Total mercury and methyl-mercury contents and accumulation in polar microbial mats. Science of the Total Environment, 2015, 509-510, 145-153.	3.9	16
96	Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Scientific Reports, 2016, 6, 22954.	1.6	16
97	AN UNUSUAL SPINE-BEARING <i>PINNULARIA </i> SPECIES FROM THE ANTARCTIC LIVINGSTON ISLAND (SOUTH)	Մj ETQq1 1 0.5	0.784314 rg 14
98	Distribution and reproductive capacity of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 2013, 25, 292-302.	0.5	14
99	Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Water Research, 2014, 63, 10-20.	5.3	14
100	Seasonal variation of chemical properties of rice field soils from Valencia, Spain. Communications in Soil Science and Plant Analysis, 1995, 26, 1-19.	0.6	13
101	The genus Microcystis (Microcystaceae/Cyanobacteria) from a Spanish reservoir: A contribution to the definition of morphological variations. Nova Hedwigia, 2004, 79, 479-495.	0.2	13
102	Incorporation of Different N Sources and Light Response Curves of Nitrogenase and Photosynthesis by Cyanobacterial Blooms from Rice Fields. Microbial Ecology, 2006, 51, 394-403.	1.4	13
103	Ecological relationships and stoichiometry within a Maritime Antarctic watershed. Antarctic Science, 2013, 25, 191-197.	0.5	13
104	New incubation device forin situ measurement of acetylene-reducing activity in ricefields. Journal of Applied Phycology, 1989, 1, 195-200.	1.5	12
105	Short- and long-term effects of ammonium on photodependent nitrogen fixation in wetland rice fields of Spain. Biology and Fertility of Soils, 1997, 24, 353-357.	2.3	12
106	Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability. Antarctic Science, 2013, 25, 254-269.	0.5	12
107	Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake. Ecological Modelling, 2016, 319, 21-30.	1.2	12
108	Maritime antarctic lakes as sentinels of climate change. International Journal of Design and Nature and Ecodynamics, 2012, 7, 239-250.	0.3	12

#	Article	lF	CITATIONS
109	First TaqMan Assay to Identify and Quantify the Cylindrospermopsin-Producing Cyanobacterium <i>Aphanizomenon ovalisporum</i> in Water. Advances in Microbiology, 2013, 03, 430-437.	0.3	12
110	Seasonal variations in the physical and chemical characteristics of a shallow water ecosystem, the ricefields of Valencia, Spain. Archiv Für Hydrobiologie, 1995, 132, 495-511.	1.1	12
111	Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biology, 2019, 42, 2131-2145.	0.5	11
112	Distribution and ecology of chironomids (Diptera, Chironomidae) on Byers Peninsula, Maritime Antarctica. Antarctic Science, 2013, 25, 288-291.	0.5	10
113	Multidisciplinary research on Byers Peninsula, Livingston Island: a future benchmark for change in Maritime Antarctica. Antarctic Science, 2013, 25, 123-127.	0.5	10
114	Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach. Polar Science, 2017, 11, 72-82.	0.5	10
115	Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay. Chemosphere, 2020, 240, 124966.	4.2	10
116	Functional Metabolic Diversity of Bacterioplankton in Maritime Antarctic Lakes. Microorganisms, 2021, 9, 2077.	1.6	10
117	Community structure and photosynthetic activity of benthic biofilms from a waterfall in the maritime Antarctica. Polar Biology, 2013, 36, 1709-1722.	0.5	9
118	The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture. Biogeosciences, 2021, 18, 993-1007.	1.3	8
119	Adaptation of cyanobacteria to the light regime within Antarctic microbial mats. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1993, 25, 960-965.	0.1	7
120	Title is missing!. Aquatic Ecology, 2002, 36, 219-227.	0.7	7
121	Development of cyanobacterial blooms in Valencian rice fields. Biology and Fertility of Soils, 2005, 41, 129-133.	2.3	7
122	Local meteorological conditions, shape and desiccation influence dispersal capabilities for airborne microorganisms. Science of the Total Environment, 2021, 780, 146653.	3.9	7
123	Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. Catalysts, 2020, 10, 1250.	1.6	6
124	Marine Vertebrates Impact the Bacterial Community Composition and Food Webs of Antarctic Microbial Mats. Frontiers in Microbiology, 2022, 13, 841175.	1.5	6
125	Spatial-temporal survey of Microcystis oligopeptide chemotypes in reservoirs with dissimilar waterbody features and their relation to genetic variation. Harmful Algae, 2019, 81, 77-85.	2.2	5
126	Characterization of the summer surface mesoscale dynamics at Dome F, Antarctica. Atmospheric Research, 2021, 259, 105699.	1.8	4

#	Article	IF	CITATIONS
127	Weather Observations of Remote Polar Areas Using an AWS Onboard a Unique Zero-Emissions Polar Vehicle. Bulletin of the American Meteorological Society, 2019, 100, 1891-1895.	1.7	4
128	Long-term studies: lessons from Byers Peninsula. Antarctic Science, 2013, 25, 121-121.	0.5	3
129	PALEOLIMNOLOGICAL EVIDENCE CONFIRMS THAT PAROCHLUS STEINENII (GERKE) IS. CHIRONOMUS Journal of Chironomidae Research, 2009, , .	0.3	2
130	Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiology Ecology, 2022, 98, .	1.3	2
131	Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia). Environmental Science and Pollution Research, 2022, 29, 27624.	2.7	1
132	Inland Water Quality Assessment - A Joint European Masters Programme. Journal of Science Education and Technology, 2006, 15, 409-415.	2.4	0