José MarÃ-a De Pereda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660325/publications.pdf

Version: 2024-02-01

50 papers

4,479 citations

172457 29 h-index 51 g-index

53 all docs 53 docs citations

53 times ranked 4715 citing authors

#	Article	IF	CITATIONS
1	PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cellular and Molecular Life Sciences, 2022, 79, 131.	5.4	6
2	C3G self-regulatory mechanism revealed: implications for hematopoietic malignancies. Molecular and Cellular Oncology, 2021, 8, 1837581.	0.7	1
3	EGFR-dependent tyrosine phosphorylation of integrin \hat{l}^24 is not required for downstream signaling events in cancer cell lines. Scientific Reports, 2021, 11, 8675.	3.3	4
4	Regulation of hemidesmosome dynamics and cell signaling by integrin $\hat{l}\pm6\hat{l}^2$ 4. Journal of Cell Science, 2021, 134, .	2.0	22
5	Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas. Science Signaling, 2020, 13 , .	3.6	11
6	Analysis of gene variants in the GASH/Sal model of epilepsy. PLoS ONE, 2020, 15, e0229953.	2.5	16
7	A mutation in p62 protein (p. R321C), associated to Paget's disease of bone, causes a blockade of autophagy and an activation of NF-kB pathway. Bone, 2020, 133, 115265.	2.9	14
8	Integrin $\hat{l}\pm6\hat{l}^24$ Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure, 2019, 27, 952-964.e6.	3.3	11
9	Ferredoxin-linked flavoenzyme defines a family of pyridine nucleotide-independent thioredoxin reductases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12967-12972.	7.1	11
10	C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation. Cell Communication and Signaling, 2018, 16, 101.	6.5	15
11	A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Scientific Reports, 2017, 7, 2648.	3.3	36
12	Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12725-12730.	7.1	12
13	The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system. Nucleus, 2017, 8, 534-547.	2.2	16
14	A New Member of the Thioredoxin Reductase Family from Early Oxygenic Photosynthetic Organisms. Molecular Plant, 2017, 10, 212-215.	8.3	15
15	Purification and Structural Analysis of Plectin and BPAG1e. Methods in Enzymology, 2016, 569, 177-196.	1.0	11
16	The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. Journal of Biological Chemistry, 2016, 291, 18643-18662.	3.4	36
17	Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nature Communications, 2015, 6, 8923.	12.8	63
18	Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin $\hat{1}\pm6\hat{1}^24$. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 969-985.	2.5	38

#	Article	IF	CITATIONS
19	Increased riboflavin production by manipulation of inosine 5′-monophosphate dehydrogenase in Ashbya gossypii. Applied Microbiology and Biotechnology, 2015, 99, 9577-9589.	3.6	31
20	The rod domain is not essential for the function of plectin in maintaining tissue integrity. Molecular Biology of the Cell, 2015, 26, 2402-2417.	2.1	18
21	C3G forms complexes with Bcr-Abl and p38 $\hat{l}\pm$ MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion. Cell Communication and Signaling, 2013, 11, 9.	6.5	24
22	Exploiting tertiary structure through local folds for crystallographic phasing. Nature Methods, 2013, 10, 1099-1101.	19.0	63
23	The Autoimmunity Risk Variant LYP-W620 Cooperates with CSK in the Regulation of TCR Signaling. PLoS ONE, 2013, 8, e54569.	2.5	16
24	Sequence Determinants of a Microtubule Tip Localization Signal (MtLS). Journal of Biological Chemistry, 2012, 287, 28227-28242.	3.4	44
25	Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. Journal of Cell Science, 2011, 124, 755-764.	2.0	42
26	The Structure of the Plakin Domain of Plectin Reveals a Non-canonical SH3 Domain Interacting with Its Fourth Spectrin Repeat. Journal of Biological Chemistry, 2011, 286, 12429-12438.	3.4	43
27	Advances and perspectives of the architecture of hemidesmosomes: Lessons from structural biology. Cell Adhesion and Migration, 2009, 3, 361-364.	2.7	53
28	Structure of the Calx- \hat{l}^2 domain of the integrin \hat{l}^2 4 subunit: insights into function and cation-independent stability. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 858-871.	2.5	33
29	Structural basis of the interaction between integrin $\hat{l}\pm6\hat{l}^24$ and plectin at the hemidesmosomes. EMBO Journal, 2009, 28, 1180-1190.	7.8	82
30	KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS Journal, 2008, 275, 3900-3910.	4.7	75
31	The Structure of a Tandem Pair of Spectrin Repeats of Plectin Reveals a Modular Organization of the Plakin Domain. Journal of Molecular Biology, 2007, 368, 1379-1391.	4.2	52
32	Current insights into the formation and breakdown of hemidesmosomes. Trends in Cell Biology, 2006, 16, 376-383.	7.9	284
33	Modeling and Experimental Validation of the Binary Complex of the Plectin Actin-binding Domain and the First Pair of Fibronectin Type III (FNIII) Domains of the Î ² 4 Integrin. Journal of Biological Chemistry, 2005, 280, 22270-22277.	3.4	18
34	Structural Basis for Phosphatidylinositol Phosphate Kinase Type \hat{l}^3 Binding to Talin at Focal Adhesions. Journal of Biological Chemistry, 2005, 280, 8381-8386.	3.4	71
35	Crystal Structure of a Human Peptidyl-tRNA Hydrolase Reveals a New Fold and Suggests Basis for a Bifunctional Activity. Journal of Biological Chemistry, 2004, 279, 8111-8115.	3.4	54
36	Characterization of an Actin-binding Site within the Talin FERM Domain. Journal of Molecular Biology, 2004, 343, 771-784.	4.2	87

#	Article	IF	CITATIONS
37	Talin Binding to Integrin Tails: A Final Common Step in Integrin Activation. Science, 2003, 302, 103-106.	12.6	1,079
38	Cell Adhesion: A FERM Grasp of Membrane Dynamics. Current Biology, 2003, 13, R94-R95.	3.9	9
39	Structural and Functional Analysis of the Actin Binding Domain of Plectin Suggests Alternative Mechanisms for Binding to F-Actin and Integrin \hat{l}^2 4. Structure, 2003, 11, 615-625.	3.3	92
40	Structural Determinants of Integrin Recognition by Talin. Molecular Cell, 2003, 11, 49-58.	9.7	475
41	Integrin cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2272-2277.	7.1	379
42	Specificity of Binding of the Plectin Actin-binding Domain to \hat{l}^24 Integrin. Molecular Biology of the Cell, 2003, 14, 4039-4050.	2.1	46
43	The Phosphotyrosine Binding-like Domain of Talin Activates Integrins. Journal of Biological Chemistry, 2002, 277, 21749-21758.	3.4	341
44	CD4 + T Cells Induced by a DNA Vaccine: Immunological Consequences of Epitope-Specific Lysosomal Targeting. Journal of Virology, 2001, 75, 10421-10430.	3.4	60
45	Crystal structure of a tandem pair of fibronectin type III domains from the cytoplasmic tail of integrin alpha 6beta 4. EMBO Journal, 1999, 18, 4087-4095.	7.8	57
46	Crystal Structure of the Vinculin Tail Suggests a Pathway for Activation. Cell, 1999, 99, 603-613.	28.9	183
47	Linking Integrin $\hat{l}\pm6\hat{l}^2$ 4-based Cell Adhesion to the Intermediate Filament Cytoskeleton: Direct Interaction between the \hat{l}^2 4 Subunit and Plectin at Multiple Molecular Sites. Journal of Cell Biology, 1998, 141, 209-225.	5.2	235
48	Tubulin Secondary Structure Analysis, Limited Proteolysis Sites, and Homology to FtsZâ€. Biochemistry, 1996, 35, 14203-14215.	2.5	61
49	Mapping Surface Sequences of the Tubulin Dimer and Taxol-Induced Microtubules with Limited Proteolysisâ€. Biochemistry, 1996, 35, 14184-14202.	2.5	19
50	Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins. Cytoskeleton, 1995, 30, 153-163.	4.4	10