José MarÃ-a De Pereda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660325/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Talin Binding to Integrin Tails: A Final Common Step in Integrin Activation. Science, 2003, 302, 103-106.	12.6	1,079
2	Structural Determinants of Integrin Recognition by Talin. Molecular Cell, 2003, 11, 49-58.	9.7	475
3	Integrin cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2272-2277.	7.1	379
4	The Phosphotyrosine Binding-like Domain of Talin Activates Integrins. Journal of Biological Chemistry, 2002, 277, 21749-21758.	3.4	341
5	Current insights into the formation and breakdown of hemidesmosomes. Trends in Cell Biology, 2006, 16, 376-383.	7.9	284
6	Linking Integrin α6β4-based Cell Adhesion to the Intermediate Filament Cytoskeleton: Direct Interaction between the β4 Subunit and Plectin at Multiple Molecular Sites. Journal of Cell Biology, 1998, 141, 209-225.	5.2	235
7	Crystal Structure of the Vinculin Tail Suggests a Pathway for Activation. Cell, 1999, 99, 603-613.	28.9	183
8	Structural and Functional Analysis of the Actin Binding Domain of Plectin Suggests Alternative Mechanisms for Binding to F-Actin and Integrin \hat{I}^2 4. Structure, 2003, 11, 615-625.	3.3	92
9	Characterization of an Actin-binding Site within the Talin FERM Domain. Journal of Molecular Biology, 2004, 343, 771-784.	4.2	87
10	Structural basis of the interaction between integrin α6β4 and plectin at the hemidesmosomes. EMBO Journal, 2009, 28, 1180-1190.	7.8	82
11	KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS Journal, 2008, 275, 3900-3910.	4.7	75
12	Structural Basis for Phosphatidylinositol Phosphate Kinase Type lÎ ³ Binding to Talin at Focal Adhesions. Journal of Biological Chemistry, 2005, 280, 8381-8386.	3.4	71
13	Exploiting tertiary structure through local folds for crystallographic phasing. Nature Methods, 2013, 10, 1099-1101.	19.0	63
14	Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nature Communications, 2015, 6, 8923.	12.8	63
15	Tubulin Secondary Structure Analysis, Limited Proteolysis Sites, and Homology to FtsZâ€. Biochemistry, 1996, 35, 14203-14215.	2.5	61
16	CD4 + T Cells Induced by a DNA Vaccine: Immunological Consequences of Epitope-Specific Lysosomal Targeting. Journal of Virology, 2001, 75, 10421-10430.	3.4	60
17	Crystal structure of a tandem pair of fibronectin type III domains from the cytoplasmic tail of integrin alpha 6beta 4. EMBO Journal, 1999, 18, 4087-4095.	7.8	57
18	Crystal Structure of a Human Peptidyl-tRNA Hydrolase Reveals a New Fold and Suggests Basis for a Bifunctional Activity. Journal of Biological Chemistry, 2004, 279, 8111-8115.	3.4	54

José MarÃa De Pereda

#	Article	IF	CITATIONS
19	Advances and perspectives of the architecture of hemidesmosomes: Lessons from structural biology. Cell Adhesion and Migration, 2009, 3, 361-364.	2.7	53
20	The Structure of a Tandem Pair of Spectrin Repeats of Plectin Reveals a Modular Organization of the Plakin Domain. Journal of Molecular Biology, 2007, 368, 1379-1391.	4.2	52
21	Specificity of Binding of the Plectin Actin-binding Domain to β4 Integrin. Molecular Biology of the Cell, 2003, 14, 4039-4050.	2.1	46
22	Sequence Determinants of a Microtubule Tip Localization Signal (MtLS). Journal of Biological Chemistry, 2012, 287, 28227-28242.	3.4	44
23	The Structure of the Plakin Domain of Plectin Reveals a Non-canonical SH3 Domain Interacting with Its Fourth Spectrin Repeat. Journal of Biological Chemistry, 2011, 286, 12429-12438.	3.4	43
24	Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. Journal of Cell Science, 2011, 124, 755-764.	2.0	42
25	Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 969-985.	2.5	38
26	The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. Journal of Biological Chemistry, 2016, 291, 18643-18662.	3.4	36
27	A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Scientific Reports, 2017, 7, 2648.	3.3	36
28	Structure of the Calx-β domain of the integrin β4 subunit: insights into function and cation-independent stability. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 858-871.	2.5	33
29	Increased riboflavin production by manipulation of inosine 5′-monophosphate dehydrogenase in Ashbya gossypii. Applied Microbiology and Biotechnology, 2015, 99, 9577-9589.	3.6	31
30	C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion. Cell Communication and Signaling, 2013, 11, 9.	6.5	24
31	Regulation of hemidesmosome dynamics and cell signaling by integrin α6β4. Journal of Cell Science, 2021, 134, .	2.0	22
32	Mapping Surface Sequences of the Tubulin Dimer and Taxol-Induced Microtubules with Limited Proteolysisâ€. Biochemistry, 1996, 35, 14184-14202.	2.5	19
33	Modeling and Experimental Validation of the Binary Complex of the Plectin Actin-binding Domain and the First Pair of Fibronectin Type III (FNIII) Domains of the β4 Integrin. Journal of Biological Chemistry, 2005, 280, 22270-22277.	3.4	18
34	The rod domain is not essential for the function of plectin in maintaining tissue integrity. Molecular Biology of the Cell, 2015, 26, 2402-2417.	2.1	18
35	The Autoimmunity Risk Variant LYP-W620 Cooperates with CSK in the Regulation of TCR Signaling. PLoS ONE, 2013, 8, e54569.	2.5	16
36	The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system. Nucleus, 2017, 8, 534-547.	2.2	16

José MarÃa De Pereda

#	Article	IF	CITATIONS
37	Analysis of gene variants in the GASH/Sal model of epilepsy. PLoS ONE, 2020, 15, e0229953.	2.5	16
38	A New Member of the Thioredoxin Reductase Family from Early Oxygenic Photosynthetic Organisms. Molecular Plant, 2017, 10, 212-215.	8.3	15
39	C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation. Cell Communication and Signaling, 2018, 16, 101.	6.5	15
40	A mutation in p62 protein (p. R321C), associated to Paget's disease of bone, causes a blockade of autophagy and an activation of NF-kB pathway. Bone, 2020, 133, 115265.	2.9	14
41	Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12725-12730.	7.1	12
42	Purification and Structural Analysis of Plectin and BPAG1e. Methods in Enzymology, 2016, 569, 177-196.	1.0	11
43	Ferredoxin-linked flavoenzyme defines a family of pyridine nucleotide-independent thioredoxin reductases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12967-12972.	7.1	11
44	Integrin α6β4 Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure, 2019, 27, 952-964.e6.	3.3	11
45	Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas. Science Signaling, 2020, 13, .	3.6	11
46	Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins. Cytoskeleton, 1995, 30, 153-163.	4.4	10
47	Cell Adhesion: A FERM Grasp of Membrane Dynamics. Current Biology, 2003, 13, R94-R95.	3.9	9
48	PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cellular and Molecular Life Sciences, 2022, 79, 131.	5.4	6
49	EGFR-dependent tyrosine phosphorylation of integrin β4 is not required for downstream signaling events in cancer cell lines. Scientific Reports, 2021, 11, 8675.	3.3	4
50	C3G self-regulatory mechanism revealed: implications for hematopoietic malignancies. Molecular and Cellular Oncology, 2021, 8, 1837581.	0.7	1