Sergey Baykov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660281/publications.pdf

Version: 2024-02-01

		430754	526166
54	871	18	27
papers	citations	h-index	g-index
58	58	58	683
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	External oxidant-free and transition metal-free synthesis of 5-amino-1,2,4-thiadiazoles as promising antibacterials against ESKAPE pathogen strains. Molecular Diversity, 2023, 27, 651-666.	2.1	4
2	Cyclometallated Platinum(II) Complexes for Obtaining Phenyl-Containing Silicone Rubbers via Catalytic Hydrosilylation Reaction. Russian Journal of General Chemistry, 2022, 92, 79-84.	0.3	9
3	Synthesis, Structure, and Antiproliferative Action of 2-Pyridyl Urea-Based Cu(II) Complexes. Biomedicines, 2022, 10, 461.	1.4	10
4	"Urea to Urea―Approach: Access to Unsymmetrical Ureas Bearing Pyridyl Substituents. Advanced Synthesis and Catalysis, 2022, 364, 1295-1304.	2.1	9
5	Hydrogen vs. halogen bonding in crystals of 2,5-dibromothiophene-3-carboxylic acid derivatives. Journal of Molecular Structure, 2022, 1260, 132785.	1.8	2
6	Dualism of 1,2,4-oxadiazole ring in noncovalent interactions with carboxylic group. Journal of Molecular Structure, 2022, 1262, 132974.	1.8	4
7	Inorganic–organic {d _{<i>z</i>²} -M ^{II} S ₄ }â<ï€-hole stacking in reverse sandwich structures: the case of cocrystals of group 10 metal dithiocarbamates with electron-deficient arenes. Inorganic Chemistry Frontiers, 2022, 9, 2869-2879.	3.0	9
8	Catalyst-free synthesis of substituted pyridin-2-yl, quinolin-2-yl, and isoquinolin-1-yl carbamates from the corresponding hetaryl ureas and alcohols. Organic and Biomolecular Chemistry, 2021, 19, 6059-6065.	1.5	12
9	2,5-Dibromothiophenes: Halogen Bond Involving Packing Patterns and Their Relevance to Solid-State Polymerization. Crystal Growth and Design, 2021, 21, 2526-2540.	1.4	9
10	Azine Steric Hindrances Switch Halogen Bonding to <i>N</i> à€Arylation upon Interplay with Ïfâ€Hole Donating Haloarenenitriles. Chemistry - an Asian Journal, 2021, 16, 1445-1455.	1.7	9
11	2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. Russian Journal of General Chemistry, 2021, 91, 768-778.	0.3	4
12	Synthesis and Structural Characterization of Half-Sandwich Areneâ€"Ruthenium(II) Complexes with Bis(imidazol-1-yl)methane, Imidazole and Benzimidazole. Inorganics, 2021, 9, 34.	1,2	4
13	Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and Ĭ€h···O(anhydride) Interaction. Molecules, 2021, 26, 3119.	1.7	1
14	Diaminocarbene Complexes of Palladium(II) Containing 2-Aminooxazole and 2-Aminothiazole Heterocyclic Ligands as Potential Antitumor Agents. Pharmaceutical Chemistry Journal, 2021, 55, 130-132.	0.3	4
15	Synthesis and Photoluminescent Properties of 2-(3-Carboxymethylindazol-1-yl)anilines. Russian Journal of General Chemistry, 2021, 91, 985-990.	0.3	0
16	Copperâ€Catalyzed Selective Nâ€Arylation of Oxadiazolones by Diaryliodonium Salts. Advanced Synthesis and Catalysis, 2021, 363, 3566-3576.	2.1	21
17	ï∈â∈"ï∈ Noncovalent Interaction Involving 1,2,4- and 1,3,4-Oxadiazole Systems: The Combined Experimental, Theoretical, and Database Study. Molecules, 2021, 26, 5672.	1.7	32
18	Electron belt-to-Ïf-hole switch of noncovalently bound iodine(<scp>i</scp>) atoms in dithiocarbamate metal complexes. Inorganic Chemistry Frontiers, 2021, 8, 2505-2517.	3.0	25

#	Article	IF	CITATIONS
19	Deprotonated diaminocarbene platinum complexes for thermoresponsive luminescent silicone materials: both catalysts and luminophores. Dalton Transactions, 2021, 50, 14994-14999.	1.6	19
20	Entry into (E)-3-(1,2,4-oxadiazol-5-yl)acrylic acids via a one-pot ring-opening/ring-closing/retro-Diels-Alder reaction sequence. Tetrahedron Letters, 2020, 61, 151543.	0.7	11
21	Copper(<scp>i</scp>) ionic complexes based on imidazo[4,5- <i>f</i>][1,10]phenanthrolin diimine chelating ligands: crystal structures, and photo- and electroluminescence properties. New Journal of Chemistry, 2020, 44, 110-120.	1.4	8
22	Reverse Sandwich Structures from Interplay between Lone Pairâ^ï∈-Hole Atom-Directed CÂ-Â-Â-d _{<i>z</i><} [M] and Halogen Bond Interactions. Crystal Growth and Design, 2020, 20, 995-1008.	1.4	35
23	Application of amidoximes for the heterocycles synthesis. Tetrahedron Letters, 2020, 61, 152403.	0.7	20
24	Synthesis and Evaluation of Antibacterial Activity of 1,2,4-Oxadiazole-Containing Biphenylcarboxylic Acids. Russian Journal of General Chemistry, 2020, 90, 1611-1619.	0.3	8
25	Synthesis and Study of the Structure of Palladium(II) Acyclic Diaminocarbene Complexes Containing a 1,2,4-Oxadiazole Moiety. Russian Journal of General Chemistry, 2020, 90, 1892-1900.	0.3	4
26	Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chemistry of Heterocyclic Compounds, 2020, 56, 814-823.	0.6	12
27	Arene–Ruthenium(II) Complexes Containing 11 <i>H</i> Indeno[1,2- <i>b</i>)quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones. ACS Omega, 2020, 5, 11167-11179.	1.6	20
28	One-Pot Route to X-perfluoroarenes (X = Br, I) Based on Fe ^{III} -Assisted C–F Functionalization and Utilization of These Arenes as Building Blocks for Crystal Engineering Involving Halogen Bonding. Crystal Growth and Design, 2020, 20, 5908-5921.	1.4	30
29	Noncovalent Sulfoxide–Nitrile Coupling Involving Four-Center Heteroleptic Dipole–Dipole Interactions between the Sulfinyl and Nitrile Groups. Crystal Growth and Design, 2020, 20, 3417-3428.	1.4	17
30	Nucleophilic properties of the positively charged metal center in the solid state structure of Palladium(II)-Terpyridine complex. Journal of Molecular Structure, 2020, 1199, 126957.	1.8	3
31	Diastereoselective Opening of Bridged Anhydrides by Amidoximes Providing Access to 1,2,4â€Oxadiazole/Norborna(e)ne Hybrids. European Journal of Organic Chemistry, 2019, 2019, 5685-5693.	1.2	13
32	Convenient entry to N-pyridinylureas with pharmaceutically privileged oxadiazole substituents via the acid-catalyzed C H activation of N-oxides. Tetrahedron Letters, 2019, 60, 151108.	0.7	20
33	The reaction of amidoximes with carboxylic acids or their esters under high-pressure conditions. Russian Chemical Bulletin, 2019, 68, 347-350.	0.4	1
34	1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. International Journal of Molecular Sciences, 2019, 20, 1699.	1.8	33
35	Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. European Journal of Medicinal Chemistry, 2019, 168, 301-314.	2.6	24
36	Synthesis and Properties of C,N-Chelated Carbene Complexes of Palladium(II) with 2-Aminobenzo [d]thiazole Fragment. Russian Journal of General Chemistry, 2019, 89, 2062-2068.	0.3	4

#	Article	IF	Citations
37	Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment. European Journal of Medicinal Chemistry, 2019, 164, 92-105.	2.6	52
38	Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 40-46.	1.0	32
39	An efficient synthesis and antimicrobial evaluation of 5-alkenyl- and 5-styryl-1,2,4-oxadiazoles. Arkivoc, 2019, 2018, 458-470.	0.3	19
40	Intermolecular hydrogen bonding H···Cl in crystal structure of palladium(II)- <i>bis</i> (diaminocarbene) complex. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 155-164.	0.4	8
41	Heterocyclic periphery in the design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzenesulfonamides as potent and selective inhibitors of cytosolic hCA II and membrane-bound hCA IX isoforms. Bioorganic Chemistry, 2018, 76, 88-97.	2.0	44
42	One-Pot Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles Using Catalytic System NaOHâ€'DMSO. Russian Journal of Organic Chemistry, 2018, 54, 1250-1255.	0.3	19
43	Pt/Pd and I/Br Isostructural Exchange Provides Formation of C–I···Pd, C–Br···Pt, and C–Br···Pd Metal-Involving Halogen Bonding. Crystal Growth and Design, 2018, 18, 5973-5980.	1.4	52
44	Facile room-temperature assembly of the 1,2,4-oxadiazole core from readily available amidoximes and carboxylic acids. Tetrahedron Letters, 2018, 59, 2824-2827.	0.7	29
45	The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron, 2017, 73, 945-951.	1.0	60
46	Selective reduction of 5-alkenyl-3-(nitrophenyl)-1,2,4-oxadiazoles to 5-alkenyl-3-(aminophenyl)-1,2,4-oxadiazoles. Russian Journal of Organic Chemistry, 2017, 53, 1085-1089.	0.3	6
47	Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Letters, 2017, 58, 3672-3677.	0.7	31
48	Reaction of amidoximes with acetonitrile at high pressure. Mendeleev Communications, 2016, 26, 264-265.	0.6	6
49	A convenient and mild method for 1,2,4-oxadiazole preparation: cyclodehydration of O -acylamidoximes in the superbase system MOH/DMSO. Tetrahedron Letters, 2016, 57, 2898-2900.	0.7	37
50	An Efficient Chemoenzymatic Process for Preparation of Ribavirin. International Journal of Chemical Engineering, 2015, 2015, 1-5.	1.4	5
51	One-pot synthesis of (5-alkyl-1,2,4-oxadiazol-3-yl)benzoic acids. Mendeleev Communications, 2015, 25, 138-139.	0.6	2
52	Synthesis of benzoic acids containing a 1,2,4-oxadiazole ring. Russian Chemical Bulletin, 2015, 64, 142-145.	0.4	1
53	Some regularities of the synthesis of ethyl 3-aryl-1,2,4-oxadiazole-5-carboxylates. Russian Journal of Organic Chemistry, 2014, 50, 1683-1686.	0.3	3
54	Formation and cyclization of N′-(benzoyloxy)benzenecarboximidamides. Russian Journal of Organic Chemistry, 2011, 47, 1874-1877.	0.3	15