Teddy Salim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660220/publications.pdf

Version: 2024-02-01

218381 197535 4,188 53 26 49 h-index citations g-index papers 56 56 56 7781 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alkali Additives Enable Efficient Large Area (>55 cm ²) Slotâ€Die Coated Perovskite Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	39
2	Direct growth of single-metal-atom chains. , 2022, 1, 245-253.		16
3	Defect Passivation Using a Phosphonic Acid Surface Modifier for Efficient RP Perovskite Blue-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 34238-34246.	4.0	15
4	Transparent electronic and photoelectric synaptic transistors based on the combination of an InGaZnO channel and a TaO _{<i>x</i>} gate dielectric. Nanoscale, 2022, 14, 10245-10254.	2.8	8
5	Crown ether enabled enhancement of ionic–electronic properties of PEDOT:PSS. Materials Horizons, 2022, 9, 2408-2415.	6.4	8
6	Formation of Corrugated $\langle i \rangle n \langle i \rangle = 1$ 2D Tin lodide Perovskites and Their Use as Lead-Free Solar Absorbers. ACS Nano, 2021, 15, 6395-6409.	7.3	18
7	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2103807.	7.8	11
8	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170282.	7.8	1
9	Controllable Solutionâ€Phase Epitaxial Growth of Q1D Sb ₂ (S,Se) ₃ /CdS Heterojunction Solar Cell with 9.2% Efficiency. Advanced Materials, 2021, 33, e2104346.	11.1	47
10	Synthesis of bismuth sulphoiodide thin films from single precursor solution. Solar Energy, 2021, 230, 714-720.	2.9	7
11	Cubic NaSbS ₂ as an Ionic–Electronic Coupled Semiconductor for Switchable Photovoltaic and Neuromorphic Device Applications. Advanced Materials, 2020, 32, e1906976.	11.1	34
12	White Electroluminescence from Perovskite–Organic Heterojunction. ACS Energy Letters, 2020, 5, 2690-2697.	8.8	21
13	Large Increase in the Dielectric Constant and Partial Loss of Coherence Increases Tunneling Rates across Molecular Wires. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45111-45121.	4.0	18
14	Stabilizing the Electroluminescence of Halide Perovskites with Potassium Passivation. ACS Energy Letters, 2020, 5, 1804-1813.	8.8	41
15	In Situ Growth of [hk1]â€Oriented Sb ₂ S ₃ for Solutionâ€Processed Planar Heterojunction Solar Cell with 6.4% Efficiency. Advanced Functional Materials, 2020, 30, 2002887.	7.8	85
16	Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. Nature Communications, 2020, 11, 1863.	5.8	39
17	Planar Resonators Supporting Extremely Confined Phonon-Polariton Modes. , 2020, , .		О
18	A facile method to evaluate the influence of trap densities on perovskite solar cell performance. Journal of Materials Chemistry C, 2019, 7, 5646-5651.	2.7	32

#	Article	IF	CITATIONS
19	Harvesting Triplet Excitons in Lead-Halide Perovskites for Room-Temperature Phosphorescence. Chemistry of Materials, 2019, 31, 2597-2602.	3.2	57
20	Assembly and photochemical properties of mesoporous networks of spinel ferrite nanoparticles for environmental photocatalytic remediation. Applied Catalysis B: Environmental, 2018, 227, 330-339.	10.8	51
21	Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites. APL Materials, 2018, 6, .	2.2	26
22	Molecular engineering of two-dimensional hybrid perovskites with broadband emission for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10301-10307.	2.7	38
23	Mesoporous implantable Pt/SrTiO3:C,N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transfer. Applied Catalysis B: Environmental, 2018, 236, 338-347.	10.8	35
24	Efficient Roomâ€Temperature Phosphorescence from Organicâ€"Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	11.1	126
25	Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Physical Review Materials, 2018, 2, .	0.9	89
26	Phonon features in terahertz photoconductivity spectra due to data analysis artifact: A case study on organometallic halide perovskites. Applied Physics Letters, 2017, 110, .	1.5	21
27	Solution-processed perovskite-kesterite reflective tandem solar cells. Solar Energy, 2017, 155, 35-38.	2.9	16
28	Facile in situ synthesis of stable luminescent organic–inorganic lead halide perovskite nanoparticles in a polymer matrix. Journal of Materials Chemistry C, 2017, 5, 7207-7214.	2.7	26
29	Reflective perovskite solar cells for efficient tandem applications. Journal of Materials Chemistry C, 2017, 5, 134-139.	2.7	27
30	Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.	7.8	54
31	Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells.	4.0	22
32	Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes. Scientific Reports, 2016, 6, 33546.	1.6	95
33	Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH ₃ NH ₃ Pbl ₃ : A Terahertz Time-Domain Spectroscopy Approach. Journal of Physical Chemistry Letters, 2016, 7, 1-6.	2.1	109
34	Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nature Communications, 2015, 6, 7903.	5.8	132
35	Correlation between blend morphology and recombination dynamics in additive-added P3HT:PCBM solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26111-26120.	1.3	15
36	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522

#	Article	IF	CITATIONS
37	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	15.6	965
38	Quinoxaline-functionalized C ₆₀ derivatives as electron acceptors in organic solar cells. RSC Advances, 2014, 4, 25291-25301.	1.7	23
39	Polymer nanofibers: preserving nanomorphology in ternary blend organic photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 23829-23836.	1.3	9
40	Performance Improvements in Polymer Nanofiber/Fullerene Solar Cells with External Electric Field Treatment. Journal of Physical Chemistry C, 2014, 118, 11285-11291.	1.5	26
41	Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo[2,1,3]-thiadiazole. Tetrahedron, 2014, 70, 6217-6221.	1.0	22
42	From benzobisthiadiazole, thiadiazoloquinoxaline to pyrazinoquinoxaline based polymers: effects of aromatic substituents on the performance of organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 18528.	6.7	30
43	Carrier Dynamics in Polymer Nanofiber:Fullerene Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18015-18022.	1.5	25
44	Conjugated polymers based on dicarboxylic imideâ€substituted isothianaphthene and their applications in solar cells. Journal of Polymer Science Part A, 2012, 50, 250-260.	2.5	19
45	Solvent additives and their effects on blend morphologies of bulk heterojunctions. Journal of Materials Chemistry, 2011, 21, 242-250.	6.7	127
46	A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications. Journal of Materials Chemistry, 2011, 21, 377-386.	6.7	138
47	Printable photo-supercapacitor using single-walled carbon nanotubes. Energy and Environmental Science, 2011, 4, 413-416.	15.6	188
48	Solution-Processed Nanocrystalline TiO ₂ Buffer Layer Used for Improving the Performance of Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1063-1067.	4.0	40
49	The Role of Poly(3-hexylthiophene) Nanofibers in an All-Polymer Blend with a Polyfluorene Copolymer for Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 9459-9468.	1.5	100
50	Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 2010, 4, 5263-5268.	7.3	566
51	Ammonium sulfate treatment at TiO2/perovskite interface boosts operational stability of perovskite solar cells. Journal of Materials Chemistry C, 0 , , .	2.7	0
52	White Electroluminescence from Perovskite–Organic Heterojunction. , 0, , .		0
53	Highly Durable Pt–Ru-Doped Ce _{0.9} Zr _{0.1} O ₂ as an Effective Dual Catalyst for Low-Temperature Simultaneous Propane and Carbon Monoxide Oxidation. Journal of Physical Chemistry C, 0, , .	1.5	0