
Dominique Delmas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6659919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol. PLoS ONE, 2011, 6, e19881.	2.5	375
2	Resveratrol as a Chemopreventive Agent: A Promising Molecule for Fighting Cancer. Current Drug Targets, 2006, 7, 423-442.	2.1	345
3	Resveratrol-induced Apoptosis Is Associated with Fas Redistribution in the Rafts and the Formation of a Death-inducing Signaling Complex in Colon Cancer Cells. Journal of Biological Chemistry, 2003, 278, 41482-41490.	3.4	241
4	Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31, 1561-1566.	2.8	241
5	Resveratrol: Preventing properties against vascular alterations and ageing. Molecular Nutrition and Food Research, 2005, 49, 377-395.	3.3	230
6	Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nature Communications, 2018, 9, 322.	12.8	226
7	Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochemical Pharmacology, 2010, 80, 2057-2065.	4.4	221
8	Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Critical Reviews in Food Science and Nutrition, 2019, 59, 3371-3379.	10.3	208
9	Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX–Bevacizumab Drug Treatment Regimen. Cancer Research, 2016, 76, 5241-5252.	0.9	203
10	Transport, stability, and biological activity of resveratrol. Annals of the New York Academy of Sciences, 2011, 1215, 48-59.	3.8	182
11	Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene, 2004, 23, 8979-8986.	5.9	181
12	Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1, 109-133.	7.4	172
13	Transport of resveratrol, a cancer chemopreventive agent, to cellular targets: plasmatic protein binding and cell uptake. Biochemical Pharmacology, 2004, 68, 1113-1118.	4.4	156
14	Resveratrol metabolites inhibit human metastatic colon cancer cells progression and synergize with chemotherapeutic drugs to induce cell death. Molecular Nutrition and Food Research, 2013, 57, 1170-1181.	3.3	126
15	Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoroâ€uracil sensitivity in human derived colon cancer cells. International Journal of Cancer, 2009, 124, 2780-2788.	5.1	122
16	Resveratrol in Human Hepatoma HepG2 Cells: Metabolism and Inducibility of Detoxifying Enzymes. Drug Metabolism and Disposition, 2007, 35, 699-703.	3.3	106
17	Sirtuin-1 Activation Controls Tumor Growth by Impeding Th17 Differentiation via STAT3 Deacetylation. Cell Reports, 2017, 19, 746-759.	6.4	104
18	Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Annals of the New York Academy of Sciences, 2015, 1348, 97-106.	3.8	90

DOMINIQUE DELMAS

#	Article	IF	CITATIONS
19	Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). Steroids, 2015, 99, 194-203.	1.8	90
20	Inhibitory effects of <i>trans</i> â€resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Molecular Nutrition and Food Research, 2008, 52, 538-548.	3.3	86
21	Endocytosis of Resveratrol via Lipid Rafts and Activation of Downstream Signaling Pathways in Cancer Cells. Cancer Prevention Research, 2011, 4, 1095-1106.	1.5	86
22	Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses. Biochimie, 2008, 90, 1674-1684.	2.6	82
23	Immunomodulation and Anti-inflammatory Roles of Polyphenols as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 852-873.	1.7	76
24	Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochemical Pharmacology, 2013, 86, 67-79.	4.4	65
25	Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity. Molecules, 2020, 25, 2009.	3.8	58
26	Structural determinants of resveratrol for cell proliferation inhibition potency: Experimental and docking studies of new analogs. European Journal of Medicinal Chemistry, 2010, 45, 2972-2980.	5.5	57
27	Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients, 2016, 8, 280.	4.1	51
28	Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor. Molecules, 2017, 22, 474.	3.8	50
29	Compared Binding Properties between Resveratrol and Other Polyphenols to Plasmatic Albumin: Consequences for the Health Protecting Effect of Dietary Plant Microcomponents. Molecules, 2014, 19, 17066-17077.	3.8	48
30	α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chemistry and Physics of Lipids, 2011, 164, 469-478.	3.2	44
31	Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells. Genes and Nutrition, 2011, 6, 161-169.	2.5	43
32	Role of membrane dynamics processes and exogenous molecules in cellular resveratrol uptake: Consequences in bioavailability and activities. Molecular Nutrition and Food Research, 2011, 55, 1142-1153.	3.3	43
33	A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. Molecular Nutrition and Food Research, 2012, 56, 345-351.	3.3	42
34	Mechanisms of ceramideâ€induced COXâ€2â€dependent apoptosis in human ovarian cancer OVCARâ€3 cells partially overlapped with resveratrol. Journal of Cellular Biochemistry, 2013, 114, 1940-1954.	2.6	39
35	Effects of endocrine disruptors on genes associated with 17β-estradiol metabolism and excretion. Steroids, 2008, 73, 1242-1251.	1.8	38
36	Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis. Food and Function, 2014, 5, 663.	4.6	37

#	Article	IF	CITATIONS
37	Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet Journal of Rare Diseases, 2014, 9, 79.	2.7	37

Polyphenol Extracts from Red Wine and Grapevine: Potential Effects on Cancers. Diseases (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. International Journal of Molecular Sciences, 2021, 22, 1295.	4.1	35
40	Study of Potential Anti-Inflammatory Effects of Red Wine Extract and Resveratrol through a Modulation of Interleukin-1-Beta in Macrophages. Nutrients, 2018, 10, 1856.	4.1	34
41	Dietary polyphenols for managing cancers: What have we ignored?. Trends in Food Science and Technology, 2020, 101, 150-164.	15.1	34

43	A role for peroxisome proliferatorâ€activated receptor gamma in resveratrolâ€induced colon cancer cell apoptosis. Molecular Nutrition and Food Research, 2014, 58, 1785-1794.	3.3	32
44	Structural basis for the potential antitumour activity of DNA-interacting benzo[kl]xanthenelignans. Organic and Biomolecular Chemistry, 2011, 9, 701-710.	2.8	31
45	Molecular analysis on the chemopreventive properties of resveratrol, a plant polyphenol microcomponent. International Journal of Molecular Medicine, 2002, 10, 755-60.	4.0	31
46	Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Annals of the New York Academy of Sciences, 2013, 1290, 90-97.	3.8	30
47	Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget, 2019, 10, 2161-2172.	1.8	30
48	Resveratrol-Induced Xenophagy Promotes Intracellular Bacteria Clearance in Intestinal Epithelial Cells and Macrophages. Frontiers in Immunology, 2018, 9, 3149.	4.8	29
49	Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS ONE, 2017, 12, e0170823.	2.5	28
50	P-Glycoprotein 1 Affects Chemoactivities of Resveratrol against Human Colorectal Cancer Cells. Nutrients, 2019, 11, 2098.	4.1	27
51	Xanthohumol, a Prenylated Flavonoid from Hops, Induces DNA Damages in Colorectal Cancer Cells and Sensitizes SW480 Cells to the SN38 Chemotherapeutic Agent. Cells, 2020, 9, 932.	4.1	27
52	Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol. Molecules, 2014, 19, 7850-7868.	3.8	25
53	Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. Food and Chemical Toxicology, 2018, 116, 323-334.	3.6	25
54	Identification of Three-Way DNA Junction Ligands through Screening of Chemical Libraries and Validation by Complementary in Vitro Assays. Journal of Medicinal Chemistry, 2019, 62, 4456-4466.	6.4	25

DOMINIQUE DELMAS

#	Article	IF	CITATIONS
55	Immune Th17 lymphocytes play a critical role in the multiple beneficial properties of resveratrol. Food and Chemical Toxicology, 2020, 137, 111091.	3.6	25
56	Phenolic Extract from <i>Sonchus oleraceus</i> L. Protects Diabetesâ€related Liver Injury in Rats through TLR4/NFâ€PB Signaling Pathway. EFood, 2020, 1, 77-84.	3.1	25
57	Protective function of autophagy during VLCFA-induced cytotoxicity in a neurodegenerative cell model. Free Radical Biology and Medicine, 2019, 137, 46-58.	2.9	23
58	A New Highlight of Ephedra alata Decne Properties as Potential Adjuvant in Combination with Cisplatin to Induce Cell Death of 4T1 Breast Cancer Cells In Vitro and In Vivo. Cells, 2020, 9, 362.	4.1	23
59	Common Pathways in Health Benefit Properties of RSV in Cardiovascular Diseases, Cancers and Degenerative Pathologies. Current Pharmaceutical Biotechnology, 2015, 16, 219-244.	1.6	21
60	Litchi (<i>Litchi chinensis</i> Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food and Function, 2021, 12, 9527-9548.	4.6	17
61	A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. Molecular Nutrition and Food Research, 2012, 56, 345-351.	3.3	17
62	Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules, 2018, 23, 7.	3.8	16
63	Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144. Molecules, 2017, 22, 1940.	3.8	12
64	Silymarin and Derivatives: From Biosynthesis to Health Benefits. Molecules, 2020, 25, 2415.	3.8	12
65	LPCAT2 controls chemoresistance in colorectal cancer. Molecular and Cellular Oncology, 2018, 5, e1448245.	0.7	10
66	Red Wine Extract Disrupts Th17 Lymphocyte Differentiation in a Colorectal Cancer Context. Molecular Nutrition and Food Research, 2020, 64, 1901286.	3.3	10
67	PD-1/PD-L1 Checkpoints and Resveratrol: A Controversial New Way for a Therapeutic Strategy. Cancers, 2021, 13, 4509.	3.7	10
68	RESVEGA, a Nutraceutical Omega-3/Resveratrol Supplementation, Reduces Angiogenesis in a Preclinical Mouse Model of Choroidal Neovascularization. International Journal of Molecular Sciences, 2021, 22, 11023.	4.1	7
69	Red Wine Extract Inhibits VEGF Secretion and Its Signaling Pathway in Retinal ARPE-19 Cells to Potentially Disrupt AMD. Molecules, 2020, 25, 5564.	3.8	6
70	VEGF-R2/Caveolin-1 Pathway of Undifferentiated ARPE-19 Retina Cells: A Potential Target as Anti-VEGF-A Therapy in Wet AMD by Resvega, an Omega-3/Polyphenol Combination. International Journal of Molecular Sciences, 2021, 22, 6590.	4.1	6
71	Potential role of oxidative DNA damage in the impact of PNPLA3 variant (rs 738409 C>C) in hepatocellular carcinoma risk. Hepatology, 2014, 60, 1110-1111.	7.3	5
72	Essential Oils, Pituranthos chloranthus and Teucrium ramosissimum, Chemosensitize Resistant Human Uterine Sarcoma MES-SA/Dx5 Cells to Doxorubicin by Inducing Apoptosis and Targeting P-Glycoprotein. Nutrients, 2021, 13, 1719.	4.1	4

#	Article	IF	CITATIONS
73	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
74	Resveratrol-Dependent Stimulation of Mitochondrial Fatty Acid Oxidation in Deficient Cells. Implication of miRNAs. Proceedings (mdpi), 2019, 11, .	0.2	0
75	Resveratrol against Major Pathologies. , 2011, , 339-378.		0