
Yewen Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6659857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickel-catalysed SET-reduction-based access to functionalized allenes <i>via</i> 1,4-carbohydrogenation of 1,3-enynes with alkyl bromides. Organic Chemistry Frontiers, 2022, 9, 3862-3868.	4.5	9
2	Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis. Organic Chemistry Frontiers, 2021, 8, 1732-1738.	4.5	13
3	Application of the stabilization effect of a silyl group in radical-polar crossover reactions enabled by photoredox-neutral catalysis. Organic Chemistry Frontiers, 2021, 8, 5303-5309.	4.5	10
4	Copper-Catalyzed Ring-Opening 1,3-Aminotrifluoromethylation of Arylcyclopropanes. Organic Letters, 2021, 23, 2268-2272.	4.6	26
5	Cobalt-Catalyzed Markovnikov-Selective Radical Hydroacylation of Unactivated Alkenes with Acylphosphonates. Journal of the American Chemical Society, 2021, 143, 4955-4961.	13.7	35
6	Modular access to 1,2-allenyl ketones based on a photoredox-catalysed radical-polar crossover process. Organic and Biomolecular Chemistry, 2021, 19, 8502-8506.	2.8	11
7	Radical trifluoromethylation. Chemical Society Reviews, 2021, 50, 6308-6319.	38.1	206
8	Trifluoromethylation of Alkyl Radicals: Breakthrough and Challenges ^{â€} . Chinese Journal of Chemistry, 2020, 38, 787-789.	4.9	41
9	Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radicalâ€Polar Crossover Cyclopropanation of Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1778-1781.	2.4	23
10	<scp>Silverâ€Mediated <i>N</i>â€Trifluoromethylation</scp> of Amides and Peptides. Chinese Journal of Chemistry, 2020, 38, 924-928.	4.9	24
11	Radical addition-polar termination cascade: efficient strategy for photoredox-neutral-catalysed cyclopropanation and Giese-type reactions of alkenyl <i>N</i> -methyliminodiacetyl boronates. Organic Chemistry Frontiers, 2020, 7, 1588-1592.	4.5	18
12	Photoredoxâ€Catalyzed Cyclopropanation of 1,1â€Disubstituted Alkenes via Radicalâ€Polar Crossover Process. Advanced Synthesis and Catalysis, 2019, 361, 4215-4221.	4.3	36
13	Palladium-catalysed coupling of α-halo vinylphosphonate and α-phosphonovinyl sulfonate with alkylzincs: straightforward and versatile synthesis of α-alkyl vinylphosphonates. Organic Chemistry Frontiers, 2018, 5, 1457-1461.	4.5	8
14	Visibleâ€Lightâ€Promoted Decarboxylative Giese Reactions of αâ€Aryl Ethenylphosphonates and the Application in the Synthesis of Fosmidomycin Analogue. Advanced Synthesis and Catalysis, 2018, 360, 1352-1357.	4.3	24
15	Front Cover Picture: Visibleâ€Lightâ€Promoted Redoxâ€Neutral Cyclopropanation Reactions of αâ€Substituted Vinylphosphonates and Other Michael Acceptors with Chloromethyl Silicate as Methylene Transfer Reagent (Adv. Synth. Catal. 23/2018). Advanced Synthesis and Catalysis, 2018, 360, 4457-4457.	4.3	4
16	Visibleâ€Lightâ€Promoted Redoxâ€Neutral Cyclopropanation Reactions of αâ€Substituted Vinylphosphonates and Other Michael Acceptors with Chloromethyl Silicate as Methylene Transfer Reagent. Advanced Synthesis and Catalysis, 2018, 360, 4459-4463.	4.3	43
17	Efficient synthesis of α-substituted ethylphosphonates via CuH-catalyzed conjugate reduction of terminal alkenylphosphonate. Tetrahedron Letters, 2017, 58, 4538-4541.	1.4	5
18	Pd-Catalysed Suzuki coupling of α-bromoethenylphosphonates with organotrifluoroborates: a general protocol for the synthesis of terminal α-substituted vinylphosphonates. Organic and Biomolecular Chemistry, 2017, 15, 8985-8989.	2.8	15

Yewen Fang

#	Article	IF	CITATIONS
19	αâ€Phosphonovinyl Arylsulfonates: An Attractive Partner for the Synthesis of αâ€6ubstituted Vinylphosphonates through Palladiumâ€Catalyzed Suzuki Reactions. European Journal of Organic Chemistry, 2016, 2016, 1577-1587.	2.4	19
20	Metal-free diimide reduction of alkenylphosphonates: simple and efficient protocol for the synthesis of α-substituted ethylphosphonates. Tetrahedron Letters, 2016, 57, 1368-1371.	1.4	7
21	Advances in the Synthesis of <i>α</i> -Aryl Vinylphosphonates. Chinese Journal of Organic Chemistry, 2016, 36, 673.	1.3	9
22	Pd atalyzed Synthesis of <i>α</i> â€Aryl Vinylphosphonates via Suzuki Arylation of <i>α</i> â€Phosphonovinyl Nonaflates. Chinese Journal of Chemistry, 2015, 33, 1119-1123.	4.9	13
23	Applications of α-Phosphonovinyl Tosylates in the Synthesis of α-Arylethenylphosphonates via Suzuki–Miyaura Cross-Coupling Reactions. Organic Letters, 2015, 17, 798-801.	4.6	24
24	Expedient Synthesis of Terminal Vinylphosphonates by Palladium-Catalyzed Câ^'C Cross-Coupling Reactions of (1-Halovinyl)phosphonates. Synlett, 2015, 26, 980-984.	1.8	12
25	Preference of 4-exoRing Closure in Copper-Catalyzed Intramolecular Coupling of Vinyl Bromides with Alcohols. Journal of the American Chemical Society, 2007, 129, 8092-8093.	13.7	71
26	O-Arylation versus C-Arylation:Â Copper-Catalyzed Intramolecular Coupling of Aryl Bromides with 1,3-Dicarbonyls. Journal of Organic Chemistry, 2006, 71, 6427-6431.	3.2	117
27	Cul-catalyzed intramolecular O-vinylation of carbonyl compounds. Chemical Communications, 2005, , 3574.	4.1	41