Patrick C H Hsieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6659230/publications.pdf Version: 2024-02-01

PATRICK C H HSIEH

#	Article	IF	CITATIONS
1	Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair. Circulation, 2019, 139, 647-659.	1.6	183
2	Human iPSC banking: barriers and opportunities. Journal of Biomedical Science, 2019, 26, 87.	2.6	142
3	Instructive Nanofiber Scaffolds with VEGF Create a Microenvironment for Arteriogenesis and Cardiac Repair. Science Translational Medicine, 2012, 4, 146ra109.	5.8	136
4	Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes. Cell Reports, 2015, 12, 1960-1967.	2.9	77
5	Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics, 2019, 9, 6550-6567.	4.6	61
6	Inducing a Transient Increase in Blood–Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme. ACS Nano, 2019, 13, 97-113.	7.3	56
7	A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomaterials Science, 2014, 2, 567.	2.6	45
8	Harnessing the early post-injury inflammatory responses for cardiac regeneration. Journal of Biomedical Science, 2017, 24, 7.	2.6	41
9	The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics, 2018, 8, 3176-3188.	4.6	39
10	Reprogrammingâ€derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Molecular Medicine, 2017, 9, 251-264.	3.3	33
11	Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules, 2021, 26, 5052.	1.7	33
12	Nanotechnology Approaches in Tackling Cardiovascular Diseases. Molecules, 2019, 24, 2017.	1.7	32
13	Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of NaÃ ⁻ ve Pluripotency. Stem Cells, 2015, 33, 3468-3480.	1.4	31
14	Biomimicking Platelet–Monocyte Interactions as a Novel Targeting Strategy for Heart Healing. Advanced Healthcare Materials, 2016, 5, 2686-2697.	3.9	31
15	MicroRNA let-7-TGFBR3 signalling regulates cardiomyocyte apoptosis after infarction. EBioMedicine, 2019, 46, 236-247.	2.7	30
16	Immune cell shuttle for precise delivery of nanotherapeutics for heart disease and cancer. Science Advances, 2021, 7, .	4.7	30
17	Injection of Human Cord Blood Cells With Hyaluronan Improves Postinfarction Cardiac Repair in Pigs. Stem Cells Translational Medicine, 2016, 5, 56-66.	1.6	23
18	Bone morphogenetic protein 4: Potential regulator of shear stress-induced graft neointimal atrophy. Journal of Vascular Surgery, 2006, 43, 150-158.	0.6	22

PATRICK C H HSIEH

#	Article	IF	CITATIONS
19	Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cellular and Molecular Life Sciences, 2017, 74, 1805-1817.	2.4	22
20	Human Placenta-Derived Adherent Cells Improve Cardiac Performance in Mice With Chronic Heart Failure. Stem Cells Translational Medicine, 2015, 4, 269-275.	1.6	19
21	Reloadable multidrug capturing delivery system for targeted ischemic disease treatment. Science Translational Medicine, 2016, 8, 365ra160.	5.8	19
22	Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells, 2022, 11, 1853.	1.8	19
23	Emerging Nano-Carrier Strategies for Brain Tumor Drug Delivery and Considerations for Clinical Translation. Pharmaceutics, 2021, 13, 1193.	2.0	17
24	The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Research, 2017, 2, 100-110.	2.4	15
25	Primary cardiac manifestation of autosomal dominant polycystic kidney disease revealed by patient induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine, 2019, 40, 675-684.	2.7	15
26	Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy. Stem Cell Research, 2018, 28, 56-60.	0.3	14
27	Population-based high-throughput toxicity screen of human iPSC-derived cardiomyocytes and neurons. Cell Reports, 2022, 39, 110643.	2.9	13
28	Subcellular Localization of Survivin Determines Its Function in Cardiomyocytes. Theranostics, 2017, 7, 4577-4590.	4.6	12
29	Generation of an induced pluripotent stem cell (iPSC) line from a 40-year-old patient with the A8344G mutation of mitochondrial DNA and MERRF (myoclonic epilepsy with ragged red fibers) syndrome. Stem Cell Research, 2018, 27, 10-14.	0.3	12
30	Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy. Scientific Reports, 2021, 11, 2377.	1.6	11
31	Generation of an induced pluripotent stem cell line from a 39-year-old female patient with severe-to-profound non-syndromic sensorineural hearing loss and a A1555G mutation in the mitochondrial MTRNR1 gene. Stem Cell Research, 2017, 25, 245-249.	0.3	9
32	Generation of 2 induced pluripotent stem cell lines derived from patients with Parkinson's disease carrying LRRK2 G2385R variant. Stem Cell Research, 2018, 28, 1-5.	0.3	9
33	Copy number variant hotspots in Han Taiwanese population induced pluripotent stem cell lines - lessons from establishing the Taiwan human disease iPSC Consortium Bank. Journal of Biomedical Science, 2020, 27, 92.	2.6	9
34	Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis. Scientific Reports, 2017, 7, 7372.	1.6	7
35	Generation of novel induced pluripotent stem cell (iPSC) line from a 16-year-old sialidosis patient with NEU-1 gene mutation. Stem Cell Research, 2018, 28, 39-43.	0.3	7
36	The Time Window for Therapy with Peptide Nanofibers Combined with Autologous Bone Marrow Cells in Pigs after Acute Myocardial Infarction. PLoS ONE, 2015, 10, e0115430.	1.1	6

PATRICK C H HSIEH

#	Article	IF	CITATIONS
37	Generation of induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient with a p.Ser1457fs mutation in PKD1. Stem Cell Research, 2017, 24, 139-143.	0.3	6
38	Generation of induced pluripotent stem cells from a patient with spinocerebellar ataxia type 3. Stem Cell Research, 2017, 18, 29-32.	0.3	5
39	Induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient carrying a PKD1 Q533X mutation. Stem Cell Research, 2017, 25, 83-87.	0.3	5
40	Generation of an induced pluripotent stem cell line, IBMS-iPSC-014-05, from a female autosomal dominant polycystic kidney disease patient carrying a common mutation of R803X in PKD2. Stem Cell Research, 2017, 25, 38-41.	0.3	4
41	Reprogramming of a human induced pluripotent stem cell (iPSC) line (IBMSi012-A) from an early-onset Parkinson's disease patient harboring a homozygous p.D331Y mutation in the PLA2G6 gene. Stem Cell Research, 2019, 37, 101432.	0.3	4
42	Fenugreek Compound (N55) Lowers Plasma Glucose through the Enhancement of Response of Physiological Glucagon-like peptide-1. Scientific Reports, 2017, 7, 12265.	1.6	3
43	To Be Young at Heart. Cell Stem Cell, 2018, 22, 475-476.	5.2	3
44	Cardio- and Neurotoxicity of Selected Anti-COVID-19 Drugs. Pharmaceuticals, 2022, 15, 765.	1.7	3
45	Arrhythmogenesis: a Roadblock to Cardiac Stem Cell Therapy. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 61.	0.4	2
46	Generation of induced pluripotent stem cells from a patient with Parkinson's disease carrying LRRK2 p.12012T mutation. Stem Cell Research, 2017, 25, 123-127.	0.3	2
47	Generation of induced pluripotent stem cells (IBMSi011-A) from a patient with Parkinson's disease carrying LRRK2 p.I1371V mutation. Stem Cell Research, 2019, 37, 101447.	0.3	0
48	Swaying leukocyte traffic from the bone marrow. Nature Biomedical Engineering, 2020, 4, 1026-1027.	11.6	0
49	Generation of a human induced pluripotent stem cell (iPSC) line (IBMS-iPSC-048-05) from a patient with ALS and parkinsonism having a hexanucleotide repeat expansion mutation in C9orf72 gene. Stem Cell Research, 2020, 44, 101734.	0.3	0