Wah Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6659204/publications.pdf

Version: 2024-02-01

358 papers

27,539 citations

82 h-index 146 g-index

403 all docs 403 docs citations

403 times ranked

28536 citing authors

#	Article	IF	CITATIONS
1	Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 2001, 19, 26-59.	2.4	2,005
2	Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function. Journal of Cell Biology, 1997, 138, 771-781.	5 . 2	685
3	Paraneoplastic Thrombocytosis in Ovarian Cancer. New England Journal of Medicine, 2012, 366, 610-618.	27.0	651
4	Structure of the AcrAB–TolC multidrug efflux pump. Nature, 2014, 509, 512-515.	27.8	519
5	Designer nanoscale DNA assemblies programmed from the top down. Science, 2016, 352, 1534-1534.	12.6	500
6	Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 2011, 10, 243-251.	27.5	498
7	Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. Journal of the American Chemical Society, 2008, 130, 8175-8177.	13.7	471
8	The Structure of ClpB. Cell, 2003, 115, 229-240.	28.9	422
9	Three-dimensional structure of rotavirus. Journal of Molecular Biology, 1988, 199, 269-275.	4.2	363
10	Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. Journal of Structural Biology, 2010, 170, 427-438.	2.8	352
11	Protein Structure Fitting and Refinement Guided by Cryo-EM Density. Structure, 2008, 16, 295-307.	3.3	334
12	Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications, 2005, , 3915.	4.1	310
13	Seeing the Herpesvirus Capsid at 8.5 Å . Science, 2000, 288, 877-880.	12.6	298
14	Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nature Methods, 2017, 14, 983-985.	19.0	298
15	Bridging the information gap: computational tools for intermediate resolution structure interpretation. Journal of Molecular Biology, 2001, 308, 1033-1044.	4.2	282
16	Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature, 2006, 439, 612-616.	27.8	280
17	Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta. Journal of Molecular Biology, 2009, 392, 181-190.	4.2	272
18	The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure, 2012, 20, 814-825.	3.3	261

#	Article	IF	CITATIONS
19	EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Research, 2011, 39, D456-D464.	14.5	246
20	Common Ancestry of Herpesviruses and Tailed DNA Bacteriophages. Journal of Virology, 2005, 79, 14967-14970.	3.4	245
21	Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nature Structural and Molecular Biology, 2006, 13, 209-217.	8.2	235
22	EMDataBank unified data resource for 3DEM. Nucleic Acids Research, 2016, 44, D396-D403.	14.5	230
23	Measurement of atom resolvability in cryo-EM maps with Q-scores. Nature Methods, 2020, 17, 328-334.	19.0	230
24	Visualization of Tegument-Capsid Interactions and DNA in Intact Herpes Simplex Virus Type 1 Virions. Journal of Virology, 1999, 73, 3210-3218.	3.4	229
25	Backbone structure of the infectious $\hat{l}\mu 15$ virus capsid revealed by electron cryomicroscopy. Nature, 2008, 451, 1130-1134.	27.8	204
26	Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature, 2015, 527, 336-341.	27.8	199
27	Mechanism of folding chamber closure in a group II chaperonin. Nature, 2010, 463, 379-383.	27.8	196
28	Mitochondrial ATP Synthasome. Journal of Biological Chemistry, 2004, 279, 31761-31768.	3.4	193
29	Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1355-1360.	7.1	191
30	Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nature Structural Biology, 2003, 10, 131-135.	9.7	190
31	An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. ELife, 2017, 6, .	6.0	190
32	Identification of Secondary Structure Elements in Intermediate-Resolution Density Maps. Structure, 2007, 15, 7-19.	3.3	188
33	Protein Subunit Structures in the Herpes Simplex Virus A-capsid Determined from 400 kV Spot-scan Electron Cryomicroscopy. Journal of Molecular Biology, 1994, 242, 456-469.	4.2	187
34	Seeing GroEL at 6 \tilde{A} Resolution by Single Particle Electron Cryomicroscopy. Structure, 2004, 12, 1129-1136.	3.3	187
35	Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nature Structural Biology, 1995, 2, 18-24.	9.7	185
36	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	12.6	183

#	Article	IF	CITATIONS
37	Multifunctional RNA Nanoparticles. Nano Letters, 2014, 14, 5662-5671.	9.1	181
38	4.4 $\tilde{\text{A}}$ cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO Journal, 2011, 30, 3854-3863.	7.8	176
39	Mitochondrial ATP Synthasome. Journal of Biological Chemistry, 2003, 278, 12305-12309.	3.4	171
40	Three-dimensional structure of the HSV1 nucleocapsid. Cell, 1989, 56, 651-660.	28.9	164
41	De Novo Backbone Trace of GroEL from Single Particle Electron Cryomicroscopy. Structure, 2008, 16, 441-448.	3.3	164
42	Three-dimensional Transformation of Capsids Associated with Genome Packaging in a Bacterial Virus. Journal of Molecular Biology, 1993, 231, 65-74.	4.2	163
43	Two structural configurations of the skeletal muscle calcium release channel. Nature Structural and Molecular Biology, 1996, 3, 547-552.	8.2	161
44	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	3.3	159
45	Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nature Structural and Molecular Biology, 1995, 2, 1026-1030.	8.2	152
46	4.0-â,,« resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4967-4972.	7.1	152
47	Cryo-EM Asymmetric Reconstruction of Bacteriophage P22 Reveals Organization of its DNA Packaging and Infecting Machinery. Structure, 2006, 14, 1073-1082.	3.3	149
48	Interprotofilament interactions between Alzheimer's Aβ _{1–42} peptides in amyloid fibrils revealed by cryoEM. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4653-4658.	7.1	147
49	The Pore Structure of the Closed RyR1 Channel. Structure, 2005, 13, 1203-1211.	3.3	142
50	Three-Dimensional Architecture of the Rod Sensory Cilium and Its Disruption in Retinal Neurodegeneration. Cell, 2012, 151, 1029-1041.	28.9	142
51	Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo-electron Tomography. Journal of Molecular Biology, 2006, 364, 526-535.	4.2	139
52	Electron Cryomicroscopy of Biological Machines at Subnanometer Resolution. Structure, 2005, 13, 363-372.	3.3	138
53	Structure of a Biologically Active Estrogen Receptor-Coactivator Complex on DNA. Molecular Cell, 2015, 57, 1047-1058.	9.7	137
54	Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nature Structural and Molecular Biology, 2010, 17, 830-836.	8.2	136

#	Article	IF	CITATIONS
55	An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Reports, 2015, 11, 376-389.	6.4	136
56	A Single Immunization with Spike-Functionalized Ferritin Vaccines Elicits Neutralizing Antibody Responses against SARS-CoV-2 in Mice. ACS Central Science, 2021, 7, 183-199.	11.3	134
57	Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter, 2021, 4, 302-312.	10.0	127
58	Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nature Structural Biology, 2001, 8, 868-873.	9.7	125
59	Visualizing virus assembly intermediates inside marine cyanobacteria. Nature, 2013, 502, 707-710.	27.8	123
60	Structural diversity of supercoiled DNA. Nature Communications, 2015, 6, 8440.	12.8	122
61	A 11.5 \tilde{A} single particle reconstruction of GroEL using EMAN. Journal of Molecular Biology, 2001, 314, 253-262.	4.2	119
62	Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nature Methods, 2020, 17, 699-707.	19.0	119
63	Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Subnanometer Resolutions. Structure, 2010, 18, 903-912.	3.3	118
64	Bilamellar Cationic Liposomes Protect Adenovectors from Preexisting Humoral Immune Responses. Molecular Therapy, 2002, 5, 233-241.	8.2	117
65	An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure, 1997, 5, 885-893.	3.3	114
66	Accurate model annotation of a near-atomic resolution cryo-EM map. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3103-3108.	7.1	111
67	Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9610-9615.	7.1	106
68	An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nature Communications, 2014, 5, 4808.	12.8	105
69	A chikungunya fever vaccine utilizing an insect-specific virus platform. Nature Medicine, 2017, 23, 192-199.	30.7	105
70	Refinement of Protein Structures by Iterative Comparative Modeling and CryoEM Density Fitting. Journal of Molecular Biology, 2006, 357, 1655-1668.	4.2	104
71	The 3.5-Ã CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel. Molecular Cell, 2018, 69, 993-1004.e3.	9.7	103
72	Visualizing GroEL/ES in the Act of Encapsulating a Folding Protein. Cell, 2013, 153, 1354-1365.	28.9	102

#	Article	IF	CITATIONS
73	Cryo-EM Structures of Atomic Surfaces and Host-Guest Chemistry in Metal-Organic Frameworks. Matter, 2019, 1, 428-438.	10.0	102
74	Unravelling Degradation Mechanisms and Atomic Structure of Organic-Inorganic Halide Perovskites by Cryo-EM. Joule, 2019, 3, 2854-2866.	24.0	99
75	The Chaperonin TRiC/CCT Associates with Prefoldin through a Conserved Electrostatic Interface Essential for Cellular Proteostasis. Cell, 2019, 177, 751-765.e15.	28.9	98
76	Three-dimensional Structure of Scaffolding-containing Phage P22 Procapsids by Electron Cryo-microscopy. Journal of Molecular Biology, 1996, 260, 85-98.	4.2	97
77	Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nature Structural and Molecular Biology, 2007, 14, 432-440.	8.2	96
78	Dual Action of ATP Hydrolysis Couples Lid Closure to Substrate Release into the Group II Chaperonin Chamber. Cell, 2011, 144, 240-252.	28.9	94
79	Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: A "Horned― Bacteriophage of Marine Synechococcus. Journal of Molecular Biology, 2007, 368, 966-981.	4.2	92
80	Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nature Structural and Molecular Biology, 2008, 15, 746-753.	8.2	91
81	Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nature Structural and Molecular Biology, 2021, 28, 747-754.	8.2	91
82	Role of the Scaffolding Protein in P22 Procapsid Size Determination Suggested by T=4 and T=7 Procapsid Structures. Biophysical Journal, 1998, 74, 559-568.	0.5	90
83	Cryo-EM structure of a 40ÂkDa SAM-IV riboswitch RNA at 3.7 à resolution. Nature Communications, 2019, 10, 5511.	12.8	90
84	Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation, 2021, 144, 1714-1731.	1.6	90
85	Structure of the herpesvirus major capsid protein. EMBO Journal, 2003, 22, 757-765.	7.8	88
86	Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4606-14.	7.1	87
87	ADF/Cofilin weakens lateral contacts in the actin filament 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 291, 513-519.	4.2	86
88	Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8259-8264.	7.1	86
89	Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nature Communications, 2020, 11, 972.	12.8	86
90	Structure of the Type 1 Inositol 1,4,5-Trisphosphate Receptor Revealed by Electron Cryomicroscopy. Journal of Biological Chemistry, 2003, 278, 21319-21322.	3.4	85

#	Article	IF	Citations
91	Modulation of STAT3 Folding and Function by TRiC/CCT Chaperonin. PLoS Biology, 2014, 12, e1001844.	5.6	84
92	3D volume reconstruction of a mouse brain from histological sections using warp filtering. Journal of Neuroscience Methods, 2006, 156, 84-100.	2.5	83
93	An Examination of the Electrostatic Interactions between the N-Terminal Tail of the Brome Mosaic Virus Coat Protein and Encapsidated RNAs. Journal of Molecular Biology, 2012, 419, 284-300.	4.2	83
94	Structural Analysis of the Anaphase-Promoting Complex Reveals Multiple Active Sites and Insights into Polyubiquitylation. Molecular Cell, 2005, 20, 855-866.	9.7	81
95	Electron Cryotomography Reveals the Portal in the Herpesvirus Capsid. Journal of Virology, 2007, 81, 2065-2068.	3.4	81
96	Flexible Architecture of IP3R1 by Cryo-EM. Structure, 2011, 19, 1192-1199.	3.3	80
97	Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO Journal, 2012, 31, 720-730.	7.8	80
98	Cryo-EM of macromolecular assemblies at near-atomic resolution. Nature Protocols, 2010, 5, 1697-1708.	12.0	79
99	Experimental Verification of Conformational Variation of Human Fatty Acid Synthase as Predicted by Normal Mode Analysis. Structure, 2004, 12, 185-191.	3.3	78
100	Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano, 2019, 13, 2083-2093.	14.6	77
101	Structure of Ca2+ Release Channel at 14Ã Resolution. Journal of Molecular Biology, 2005, 345, 427-431.	4.2	76
102	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie - International Edition, 2017, 56, 14632-14636.	13.8	76
103	Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy, 1998, 72, 41-52.	1.9	7 5
104	Structure of the acrosomal bundle. Nature, 2004, 431, 104-107.	27.8	75
105	Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Molecular Cell, 2020, 78, 411-422.e4.	9.7	75
106	TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5655-64.	7.1	74
107	Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in <i>Caulobacter</i>): Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13937-13944.	7.1	73
108	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nature Methods, 2021, 18, 156-164.	19.0	73

#	Article	IF	Citations
109	TRiC's tricks inhibit huntingtin aggregation. ELife, 2013, 2, e00710.	6.0	73
110	Cryoâ€EM model validation using independent map reconstructions. Protein Science, 2013, 22, 865-868.	7.6	72
111	SuRVoS: Super-Region Volume Segmentation workbench. Journal of Structural Biology, 2017, 198, 43-53.	2.8	72
112	GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Scientific Reports, 2017, 7, 10409.	3.3	71
113	Controllable Selfâ€Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting. Advanced Materials, 2016, 28, 7501-7507.	21.0	70
114	Structural and Functional Impacts of ER Coactivator Sequential Recruitment. Molecular Cell, 2017, 67, 733-743.e4.	9.7	69
115	Machining protein microcrystals for structure determination by electron diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9569-9573.	7.1	69
116	Decontamination of SARS-CoV-2 and Other RNA Viruses from N95 Level Meltblown Polypropylene Fabric Using Heat under Different Humidities. ACS Nano, 2020, 14, 14017-14025.	14.6	69
117	Resolving individualÂatoms of protein complex by cryo-electron microscopy. Cell Research, 2020, 30, 1136-1139.	12.0	69
118	Three-dimensional structural analysis of tetanus toxin by electron crystallography. Journal of Molecular Biology, 1988, 200, 367-375.	4.2	68
119	Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. Journal of Molecular Biology, 2000, 297, 615-626.	4.2	68
120	Comparison of <i>Segger</i> and other methods for segmentation and rigidâ€body docking of molecular components in Cryoâ€EM density maps. Biopolymers, 2012, 97, 742-760.	2.4	68
121	Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12301-12306.	7.1	68
122	Structure of <i>Trypanosoma brucei</i> flagellum accounts for its bihelical motion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11105-11108.	7.1	66
123	Model of human low-density lipoprotein and bound receptor based on CryoEM. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1059-1064.	7.1	65
124	Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery. Nanotechnology, 2011, 22, 155605.	2.6	65
125	Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis. International Journal of Molecular Sciences, 2015, 16, 26706-26720.	4.1	65
126	Determination of the Gelsolin Binding Site on F-actin: Implications for Severing and Capping. Biophysical Journal, 1998, 74, 764-772.	0.5	64

#	Article	IF	Citations
127	Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography. Journal of Molecular Biology, 2010, 404, 751-772.	4.2	63
128	Visualizing Individual RuBisCO and Its Assembly into Carboxysomes in Marine Cyanobacteria by Cryo-Electron Tomography. Journal of Molecular Biology, 2018, 430, 4156-4167.	4.2	63
129	REMBI: Recommended Metadata for Biological Imagesâ€"enabling reuse of microscopy data in biology. Nature Methods, 2021, 18, 1418-1422.	19.0	63
130	Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract. ELife, 2016, 5, .	6.0	62
131	Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy. Structure, 2009, 17, 749-758.	3.3	61
132	Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14266-14271.	7.1	61
133	The skeletal muscle Ca2+ release channel has an oxidoreductase-like domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12155-12160.	7.1	60
134	Outcome of a Workshop on Archiving Structural Models of Biological Macromolecules. Structure, 2006, 14, 1211-1217.	3.3	60
135	Multi-scale 3D Cryo-Correlative Microscopy for Vitrified Cells. Structure, 2020, 28, 1231-1237.e3.	3.3	60
136	Mechanism of Scaffolding-Directed Virus Assembly Suggested by Comparison of Scaffolding-Containing and Scaffolding-Lacking P22 Procapsids. Biophysical Journal, 1999, 76, 3267-3277.	0.5	59
137	An Expanded Conformation of Single-Ring GroEL-GroES Complex Encapsulates an 86 kDa Substrate. Structure, 2006, 14, 1711-1722.	3.3	59
138	Visualizing the Structural Changes of Bacteriophage Epsilon15 and Its Salmonella Host during Infection. Journal of Molecular Biology, 2010, 402, 731-740.	4.2	59
139	Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1ÂÃ resolution. Nature, 2021, 596, 603-607.	27.8	59
140	Structure of Double-Shelled Rice Dwarf Virus. Journal of Virology, 1998, 72, 8541-8549.	3.4	59
141	Prospects for using an IVEM with a FEG for imaging macromolecules towards atomic resolution. Ultramicroscopy, 1993, 49, 407-416.	1.9	57
142	Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 138-143.	7.1	57
143	A Digital Atlas to Characterize the Mouse Brain Transcriptome. PLoS Computational Biology, 2005, 1, e41.	3.2	56
144	Neutralizing Antibodies Inhibit Chikungunya Virus Budding at the Plasma Membrane. Cell Host and Microbe, 2018, 24, 417-428.e5.	11.0	56

#	Article	IF	Citations
145	Reprogramming an ATP-driven protein machine into a light-gated nanocage. Nature Nanotechnology, 2013, 8, 928-932.	31.5	55
146	Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano, 2020, 14, 9263-9276.	14.6	55
147	Ab Initio Modeling of the Herpesvirus VP26 Core Domain Assessed by CryoEM Density. PLoS Computational Biology, 2006, 2, e146.	3.2	54
148	Human CCT4 and CCT5 Chaperonin Subunits Expressed in Escherichia coli Form Biologically Active Homo-oligomers. Journal of Biological Chemistry, 2013, 288, 17734-17744.	3.4	54
149	Fabrication of RNA 3D Nanoprisms for Loading and Protection of Small RNAs and Model Drugs. Advanced Materials, 2016, 28, 10079-10087.	21.0	54
150	The Structure of Barmah Forest Virus as Revealed by Cryo-Electron Microscopy at a 6-Angstrom Resolution Has Detailed Transmembrane Protein Architecture and Interactions. Journal of Virology, 2011, 85, 9327-9333.	3.4	53
151	Cryo-EM Structure of a Group II Chaperonin in the Prehydrolysis ATP-Bound State Leading to Lid Closure. Structure, 2011, 19, 633-639.	3.3	52
152	EMEN2: An Object Oriented Database and Electronic Lab Notebook. Microscopy and Microanalysis, 2013, 19, 1-10.	0.4	52
153	Structure of the 30ÂkDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure, 2018, 26, 490-498.e3.	3.3	52
154	Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nature Structural and Molecular Biology, 2019, 26, 1094-1105.	8.2	52
155	Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell, 2018, 172, 966-978.e12.	28.9	51
156	Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of V $_{\rm o}$ complex. Science Advances, 2020, 6, .	10.3	51
157	Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami. Nucleic Acids Research, 2021, 49, 10265-10274.	14.5	51
158	A Newly Isolated Reovirus Has the Simplest Genomic and Structural Organization of Any Reovirus. Journal of Virology, 2015, 89, 676-687.	3.4	50
159	A Tail-like Assembly at the Portal Vertex in Intact Herpes Simplex Type-1 Virions. PLoS Pathogens, 2012, 8, e1002961.	4.7	49
160	Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. Journal of the American Society for Mass Spectrometry, 2015, 26, 2141-2151.	2.8	49
161	Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Science Advances, 2020, 6, eabb1989.	10.3	49
162	Roles of Triplex and Scaffolding Proteins in Herpes Simplex Virus Type 1 Capsid Formation Suggested by Structures of Recombinant Particles. Journal of Virology, 1999, 73, 6821-6830.	3.4	49

#	Article	IF	Citations
163	Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Current Opinion in Structural Biology, 2002, 12, 263-269.	5.7	47
164	A 3D cellular context for the macromolecular world. Nature Structural and Molecular Biology, 2014, 21, 841-845.	8.2	47
165	Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nature Structural and Molecular Biology, 2019, 26, 40-49.	8.2	47
166	Near-atomic resolution cryo-EM for molecular virology. Current Opinion in Virology, 2011, 1, 110-117.	5.4	46
167	Filamentous, Mixed Micelles of Triblock Copolymers Enhance Tumor Localization of Indocyanine Green in a Murine Xenograft Model. Molecular Pharmaceutics, 2012, 9, 135-143.	4.6	46
168	Low dose electron microscopy of the crotoxin complex thin crystal. Journal of Molecular Biology, 1983, 164, 329-346.	4.2	45
169	Gorgon and pathwalking: Macromolecular modeling tools for subnanometer resolution density maps. Biopolymers, 2012, 97, 655-668.	2.4	45
170	Structural biology of cellular machines. Trends in Cell Biology, 2006, 16, 144-150.	7.9	44
171	Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge. Journal of Virology, 2018, 92, .	3.4	44
172	Validation of Cryo-EM Structure of IP3R1 Channel. Structure, 2013, 21, 900-909.	3.3	43
173	Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2449-2454.	7.1	43
174	Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage. Biophysical Journal, 2016, 110, 827-839.	0.5	43
175	Electron imaging of crotoxin complex thin crystal at 3.5 Ã Journal of Molecular Biology, 1984, 175, 93-97.	4.2	42
176	Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. Journal of Structural Biology, 2016, 194, 383-394.	2.8	42
177	A Structural Model of the Genome Packaging Process in a Membrane-Containing Double Stranded DNA Virus. PLoS Biology, 2014, 12, e1002024.	5.6	41
178	Three-Dimensional Analysis of Particle Distribution on Filter Layers inside N95 Respirators by Deep Learning. Nano Letters, 2021, 21, 651-657.	9.1	41
179	Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science, 2021, 374, 729-734.	12.6	41
180	Estimates of validity of projection approximation for three-dimensional reconstructions at high resolution. Ultramicroscopy, 1984, 14, 219-226.	1.9	40

#	Article	IF	Citations
181	Multiple Functional Roles of the Accessory I-Domain of Bacteriophage P22 Coat Protein Revealed by NMR Structure and CryoEM Modeling. Structure, 2014, 22, 830-841.	3.3	40
182	Coupling of ssRNA cleavage with DNase activity in type III-A CRISPR-Csm revealed by cryo-EM and biochemistry. Cell Research, 2019, 29, 305-312.	12.0	40
183	Structure of the surface layer protein of the outer membrane of Spirillum serpens. Journal of Ultrastructure Research, 1979, 66, 235-242.	1.1	39
184	Improved common line-based icosahedral particle image orientation estimation algorithms. Ultramicroscopy, 1997, 68, 231-255.	1.9	39
185	Determination Of Icosahedral Virus structures By Electron Cryomicroscopy At Subnanometer Resolution. Advances in Protein Chemistry, 2003, 64, 93-124.	4.4	39
186	Programming molecular topologies from single-stranded nucleic acids. Nature Communications, 2018, 9, 4579.	12.8	39
187	Constructing and Validating Initial $\hat{\text{Cl}}_{\pm}$ Models from Subnanometer Resolution Density Maps with Pathwalking. Structure, 2012, 20, 450-463.	3.3	38
188	Quantitative assessment of radiation damage in a thin protein crystal. Journal of Microscopy, 1984, 136, 35-44.	1.8	37
189	The Pattern of Tegument-Capsid Interaction in the Herpes Simplex Virus Type 1 Virion Is Not Influenced by the Small Hexon-Associated Protein VP26. Journal of Virology, 2001, 75, 11863-11867.	3.4	37
190	Crystallographic Conformers of Actin in a Biologically Active Bundle of Filaments. Journal of Molecular Biology, 2008, 375, 331-336.	4.2	37
191	The characterization of structural variations within a crystal field. Ultramicroscopy, 1988, 26, 345-360.	1.9	36
192	Effects of bilayer phases on phospholipid-poloxamer interactions. Soft Matter, 2009, 5, 1496.	2.7	36
193	Electron Cryomicroscopy of Bacillus stearothermophilus 50 S Ribosomal Subunits Crystallized on Phospholipid Monolayers. Journal of Molecular Biology, 1994, 239, 689-697.	4.2	35
194	Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum 1 1Edited by D. Rees. Journal of Molecular Biology, 2002, 317, 673-681.	4.2	35
195	Structural Mechanisms of Mutant Huntingtin Aggregation Suppression by the Synthetic Chaperonin-like CCT5 Complex Explained by Cryoelectron Tomography. Journal of Biological Chemistry, 2015, 290, 17451-17461.	3.4	35
196	Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR–Cas complex revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7176-7182.	7.1	35
197	Solution X-Ray Scattering-Based Estimation of Electron Cryomicroscopy Imaging Parameters for Reconstruction of Virus Particles. Biophysical Journal, 1999, 76, 2249-2261.	0.5	34
198	CTF Challenge: Result summary. Journal of Structural Biology, 2015, 190, 348-359.	2.8	34

#	Article	IF	Citations
199	Venezuelan Equine Encephalomyelitis Virus Structure and Its Divergence from Old World Alphaviruses. Journal of Virology, 2001, 75, 9532-9537.	3.4	33
200	Cryoelectron Microscopy of Protein IX-Modified Adenoviruses Suggests a New Position for the C Terminus of Protein IX. Journal of Virology, 2006, 80, 11881-11886.	3.4	33
201	Cryo-EM structures of <i>Helicobacter pylori</i> vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6800-6805.	7.1	33
202	The three-dimensional structure of the Limulus acrosomal process: a dynamic actin bundle 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1999, 294, 139-149.	4.2	32
203	Influence of DNA sequence on the structure of minicircles under torsional stress. Nucleic Acids Research, 2017, 45, 7633-7642.	14.5	32
204	Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Research, 2019, 12, 41-48.	10.4	32
205	Computer-controlled spot-scan imaging of crotoxin complex crystals with 400 keV electrons at near-atomic resolution. Ultramicroscopy, 1992, 46, 229-240.	1.9	31
206	Supramolecular Non-Amyloid Intermediates in the Early Stages ofÂα-Synuclein Aggregation. Biophysical Journal, 2012, 102, 1127-1136.	0.5	31
207	Electron crystallography of macromolecular periodic arrays on phospholipid monolayers. Advances in Biophysics, 1997, 34, 161-172.	0.5	30
208	Architecture of the Herpes Simplex Virus Major Capsid Protein Derived from Structural Bioinformatics. Journal of Molecular Biology, 2003, 331, 447-456.	4.2	30
209	Cryo-EM Structure of a Molluscan Hemocyanin Suggests Its Allosteric Mechanism. Structure, 2013, 21, 604-613.	3.3	30
210	Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	30
211	Structure of Isolated Nucleocapsids from Venezuelan Equine Encephalitis Virus and Implications for Assembly and Disassembly of Enveloped Virus. Journal of Virology, 2003, 77, 659-664.	3.4	29
212	Discrete Structure of an RNA Folding Intermediate Revealed by Cryo-electron Microscopy. Journal of the American Chemical Society, 2010, 132, 16352-16353.	13.7	29
213	Flagellum couples cell shape to motility in <i>Trypanosoma brucei</i> Academy of Sciences of the United States of America, 2018, 115, E5916-E5925.	7.1	29
214	Structure of Calcarisporiella thermophila Hsp104 Disaggregase that Antagonizes Diverse Proteotoxic Misfolding Events. Structure, 2019, 27, 449-463.e7.	3.3	29
215	Building 3D surface networks from 2D curve networks with application to anatomical modeling. Visual Computer, 2005, 21, 764-773.	3.5	28
216	Crystal structure of a nematode-infecting virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12781-12786.	7.1	28

#	Article	IF	Citations
217	Segmentation-free skeletonization of grayscale volumes for shape understanding. , 2008, , .		27
218	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & Spatial Control Cont	8.0	27
219	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	2.6	27
220	Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. EMBO Journal, 2004, 23, 2963-2971.	7.8	26
221	Evolving data standards for cryo-EM structures. Structural Dynamics, 2020, 7, 014701.	2.3	26
222	Cryo-ET of $\langle i \rangle$ Toxoplasma $\langle i \rangle$ parasites gives subnanometer insight into tubulin-based structures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
223	Crystallization and preliminary electron diffraction study to 3.7 Å of DNA helix-destabilizing protein gp32â^—I. Journal of Molecular Biology, 1978, 122, 103-107.	4.2	25
224	Cryo electron microscopy of unstained, unfixed RecA-cssDNA complexes. Journal of Structural Biology, 1988, 100, 166-172.	0.8	25
225	Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO. Journal of Biological Chemistry, 2016, 291, 4732-4741.	3.4	25
226	Electron Cryomicroscopy of Viruses at Near-Atomic Resolutions. Annual Review of Virology, 2017, 4, 287-308.	6.7	25
227	Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nature Protocols, 2014, 9, 2630-2642.	12.0	24
228	Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus. Scientific Reports, 2017, 7, 44176.	3.3	24
229	Multivariate analysis of single unit cells in electron crystallography. Ultramicroscopy, 1998, 74, 179-199.	1.9	23
230	Identification of Additional Coat-Scaffolding Interactions in a Bacteriophage P22 Mutant Defective in Maturation. Journal of Virology, 2000, 74, 3871-3873.	3.4	23
231	Chaperoninâ€containing TCPâ€1 complex directly binds to the cytoplasmic domain of the LOXâ€1 receptor. FEBS Letters, 2014, 588, 2133-2140.	2.8	23
232	Assessment of structural features in Cryo-EM density maps using SSE and side chain Z-scores. Journal of Structural Biology, 2018, 204, 564-571.	2.8	23
233	A glycoprotein B-neutralizing antibody structure at 2.8 à uncovers a critical domain for herpesvirus fusion initiation. Nature Communications, 2020, 11, 4141.	12.8	23
234	Containment system for the preparation of vitrified-hydrated virus specimens. Journal of Electron Microscopy Technique, 1988, 8, 343-348.	1.1	22

#	Article	IF	Citations
235	The 2010 cryoâ€em modeling challenge. Biopolymers, 2012, 97, 651-654.	2.4	22
236	Quantifying Variability of Manual Annotation in Cryo-Electron Tomograms. Microscopy and Microanalysis, 2016, 22, 487-496.	0.4	22
237	Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. Nature Communications, 2014, 5, 4278.	12.8	21
238	Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft x-ray tomography. Journal of Cell Science, 2016, 129, 3511-7.	2.0	21
239	Cryoâ€electron microscopy targets in CASP13: Overview and evaluation of results. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1128-1140.	2.6	21
240	Chikungunya virus assembly and budding visualized in situ using cryogenic electron tomography. Nature Microbiology, 2022, 7, 1270-1279.	13.3	21
241	Finding and using local symmetry in identifying lower domain movements in hexon subunits of the herpes simplex virus type 1 B capsid. Journal of Molecular Biology, 2001, 309, 903-914.	4.2	20
242	Programmable Supraâ€Assembly of a DNA Surface Adapter for Tunable Chiral Directional Selfâ€Assembly of Gold Nanorods. Angewandte Chemie, 2017, 129, 14824-14828.	2.0	20
243	Full-length three-dimensional structure of the influenza A virus M1 protein and its organization into a matrix layer. PLoS Biology, 2020, 18, e3000827.	5.6	20
244	TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nature Communications, 2020, 11, 547.	12.8	20
245	Electron Crystallographic Analysis of Two-Dimensional Streptavidin Crystals Coordinated to Metal-Chelated Lipid Monolayers. Biophysical Journal, 1998, 74, 2674-2679.	0.5	19
246	Learning-Based Segmentation Framework for Tissue Images Containing Gene Expression Data. IEEE Transactions on Medical Imaging, 2007, 26, 728-744.	8.9	19
247	Cryogenic Electron Microscopy for Energy Materials. Accounts of Chemical Research, 2021, 54, 3505-3517.	15.6	19
248	Cryo-electron tomography provides topological insights into mutant huntingtin exon 1 and polyQ aggregates. Communications Biology, 2021, 4, 849.	4.4	19
249	Imaging Frozen, Hydrated Acrosomal Bundle from Limulus Sperm at 7 Å Resolution with a 400 kV Electron Cryomicroscope. Journal of Molecular Biology, 1993, 230, 384-386.	4.2	18
250	Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to $\widehat{Gl}\pm i1$. Nature Communications, 2020, 11, 1077.	12.8	18
251	Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB. Journal of Biological Chemistry, 2021, 296, 100560.	3.4	18
252	Single atom image contrast: conventional darkâ€field and brightâ€field electron microscopy. Journal of Microscopy, 1975, 103, 33-54.	1.8	17

#	Article	IF	Citations
253	High resolution structural studies of complex icosahedral viruses: a brief overview. Virus Research, 2001, 82, 9-17.	2.2	17
254	Editorial overview: Cryo Electron Microscopy: Exciting advances in CryoEM Herald a new era in structural biology. Current Opinion in Structural Biology, 2017, 46, iv-viii.	5.7	17
255	The first single particle analysis Map Challenge: A summary of the assessments. Journal of Structural Biology, 2018, 204, 291-300.	2.8	17
256	Analysis of symmetry and three-dimensional reconstruction of thin gp32â^—I crystals. Journal of Molecular Biology, 1991, 217, 551-562.	4.2	15
257	Flopping polypeptide chains and Suleika's subtle imperfections: analysis of variations in the electron micrograph of a purple membrane crystal. Ultramicroscopy, 1993, 49, 387-396.	1.9	15
258	Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. Npj Breast Cancer, 2020, 6, 42.	5.2	14
259	Validation, analysis and annotation of cryo-EM structures. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1142-1152.	2.3	14
260	High resolution cryo system designed for JEM 100CX electron microscope. Ultramicroscopy, 1987, 23, 61-66.	1.9	13
261	Location and Flexibility of the Unique C-Terminal Tail of Aquifex aeolicus Co-Chaperonin Protein 10 as Derived by Cryo-Electron Microscopy and Biophysical Techniques. Journal of Molecular Biology, 2008, 381, 707-717.	4.2	13
262	Structural analyses of an RNA stability element interacting with poly(A). Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	13
263	Singleâ€Particle Electron Cryomicroscopy of the Ion Channels in the Excitation–Contraction Coupling Junction. Methods in Cell Biology, 2007, 79, 407-435.	1.1	12
264	Automated specimen search in cryo-TEM observation with DIFF-defocus imaging. Journal of Electron Microscopy, 2010, 59, 299-310.	0.9	12
265	The group II chaperonin Mm pn binds and refolds human γD crystallin. Protein Science, 2011, 20, 30-41.	7.6	12
266	Chaperonin TRiC/CCT Recognizes Fusion Oncoprotein AML1-ETO through Subunit-Specific Interactions. Biophysical Journal, 2016, 110, 2377-2385.	0.5	12
267	The Electron Microscopy eXchange (EMX) initiative. Journal of Structural Biology, 2016, 194, 156-163.	2.8	12
268	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathogens, 2021, 17, e1008961.	4.7	12
269	Modular software platform for low-dose electron microscopy and tomography. Journal of Microscopy, 2007, 228, 384-389.	1.8	11
270	Evaluation system and web infrastructure for the second cryo-EM model challenge. Journal of Structural Biology, 2018, 204, 96-108.	2.8	11

#	Article	IF	Citations
271	Effect of stray magnetic field on image resolution in transmission electron microscopy. Ultramicroscopy, 1980, 5, 351-356.	1.9	10
272	Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography. Journal of Visualized Experiments, 2014, , e50783.	0.3	10
273	The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump. Biological Chemistry, 2015, 396, 1073-1082.	2.5	10
274	Segmentation and Comparative Modeling in an 8.6-Ã Cryo-EM Map of the Singapore Grouper Iridovirus. Structure, 2019, 27, 1561-1569.e4.	3.3	10
275	A 3.4-Ã cryo-electron microscopy structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles. QRB Discovery, 2020, 1, e11.	1.6	10
276	Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure, 2020, 28, 604-612.e3.	3.3	10
277	Planar 2D wireframe DNA origami. Science Advances, 2022, 8, .	10.3	10
278	Specimen preparative methods for electron crystallography of soluble proteins. Ultramicroscopy, 1984, 13, 19-25.	1.9	9
279	Studying Large Viruses. Advances in Protein Chemistry, 2003, 64, 379-408.	4.4	9
280	CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Nature Communications, 2021, 12, 4754.	12.8	9
281	The thickness determination of organic crystals under low dose conditions using electron energy loss spectroscopy. Microscopy Research and Technique, 1992, 21, 166-170.	2.2	8
282	Cryogenic Correlative Singleâ€Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angewandte Chemie - International Edition, 2020, 59, 15642-15648.	13.8	8
283	RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biology, 2021, 18, 2390-2400.	3.1	8
284	Potential for High-Resolution Electron Crystallography at Intermediate High Voltage. Annals of the New York Academy of Sciences, 1986, 483, 149-156.	3.8	7
285	Automatic Detection of Spherical Particles from Spot-Scan Electron Microscopy Images. Microscopy and Microanalysis, 1995, 1, 191-201.	0.4	7
286	Macromolecular Structure Visualization Tools at NCMI. Microscopy and Microanalysis, 2000, 6, 282-283.	0.4	7
287	Responses to <i>`Atomic resolution': a badly abused term in structural biology</i> Crystallographica Section D: Structural Biology, 2017, 73, 381-383.	2.3	7
288	Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography. Microbial Cell, 2014, 1, 45-47.	3.2	7

#	Article	IF	Citations
289	Cryo-EM, Protein Engineering, and Simulation Enable the Development of Peptide Therapeutics against Acute Myeloid Leukemia. ACS Central Science, 2022, 8, 214-222.	11.3	7
290	Perspectives and outlook for electron microscopy in biology in general. Ultramicroscopy, 1982, 10, 165-177.	1.9	6
291	Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal. Ultramicroscopy, 1984, 13, 27-34.	1.9	6
292	Methods and Applications of Campenot Trichamber Neuronal Cultures for the Study of Neuroinvasive Viruses. Methods in Molecular Biology, 2022, 2431, 181-206.	0.9	6
293	Electron crystallography of macromolecules. Current Opinion in Biotechnology, 1993, 4, 397-402.	6.6	5
294	Web-based Simulation for Contrast Transfer Function and Envelope Functions. Microscopy and Microanalysis, 2001, 7, 329-334.	0.4	5
295	Macromolecular Assemblies Highlighted. Structure, 2005, 13, 339-341.	3.3	5
296	Distribution of evaluation scores for the models submitted to the second cryo-EM model challenge. Data in Brief, 2018, 20, 1629-1638.	1.0	5
297	Low-dose thickness measurement of glucose-embedded protein crystals by electron energy loss spectroscopy and STEM dark-field imaging. Ultramicroscopy, 1993, 52, 157-166.	1.9	4
298	A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB. Applied Biosafety, 2010, 15, 130-136.	0.5	4
299	3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. Nano Research, 2020, 13, 3241-3247.	10.4	4
300	Emdatabank: Unified Data Resource for 3DEM. Biophysical Journal, 2013, 104, 351a.	0.5	3
301	Web-based Simulation for Contrast Transfer Function and Envelope Functions. Microscopy and Microanalysis, 2001, 7, 329-334.	0.4	2
302	Computational Tools to Improve Visualization by Cryo-Electron Tomography. Biophysical Journal, 2016, 110, 159a.	0.5	2
303	Cryo-EM Structures of Atomic Surfaces and Host-Guest Chemistry in Metal-Organic Frameworks. Matter, 2020, 2, 1064.	10.0	2
304	Regulation of reversible conformational change, size switching, and immunomodulation of RNA nanocubes. Rna, 2021, 27, 971-980.	3.5	2
305	Electron crystallography of chiral and non-chiral small molecules. Ultramicroscopy, 2022, 232, 113417.	1.9	2
306	Web-based Simulation for Contrast Transfer Function and Envelope Functions. Microscopy and Microanalysis, 2001, 7, 329-334.	0.4	2

#	Article	IF	CITATIONS
307	A transform method for fast generalized image registration. , 0, , .		1
308	Visualizing Virus Assembly Intermediates Inside Marine Cyanobacteria by Zernike Phase Contrast Electron Cryo-Tomography. Microscopy and Microanalysis, 2014, 20, 202-203.	0.4	1
309	Zernike Phase Plate Configuration at Intermediate Lens Position on JEM2200FS. Microscopy and Microanalysis, 2015, 21, 2143-2144.	0.4	1
310	Optimization of JEM2200FS for Zernike Phase Contrast Cryo-EM. Microscopy and Microanalysis, 2015, 21, 1577-1578.	0.4	1
311	Stanford-SLAC Cryo-EM Center (S ² C ²). Microscopy and Microanalysis, 2019, 25, 2658-2659.	0.4	1
312	Cryo-EM Study of Chaperonin Mm-Cpn's Conformational Heterogeneity under Different ATP Conditions. Microscopy and Microanalysis, 2019, 25, 1006-1007.	0.4	1
313	Cryogenic Correlative Singleâ€Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angewandte Chemie, 2020, 132, 15772-15778.	2.0	1
314	Cryo-Electron Microscopy (CEM) Structures of Viruses., 2021,, 233-241.		1
315	CryoEM Map-Model Scores: From Average Density to Q-scores. Microscopy and Microanalysis, 2021, 27, 1382-1384.	0.4	1
316	The 3-Dimensional Architecture of Platelets in the Native State by Electron Cryotomography Blood, 2005, 106, 1658-1658.	1.4	1
317	Atlas of plant viruses, volumes I and II. Micron and Microscopica Acta, 1988, 19, 115.	0.2	0
318	400 Kv Electron Cryo-Microscopic Imaging Of Large Icosahedral Viruses Towards Atomic Resolution. Microscopy and Microanalysis, 1999, 5, 186-187.	0.4	0
319	Electron Crystallographic Structure of the Limulus Acrosomal Bundle at 20 Ã Resolution. Microscopy and Microanalysis, 2000, 6, 242-243.	0.4	0
320	Estimates of the Fourier Amplitude Decay of Electron Micrographs of Single Particles. Microscopy and Microanalysis, 2000, 6, 256-257.	0.4	0
321	Merging Focal Pairs for Improved Particle Selection and Orientation Determination. Microscopy and Microanalysis, 2002, 8, 216-217.	0.4	0
322	Development of a Web Based Data Storage and Project Management System for Biological Electron Cryo-microscopy. Microscopy and Microanalysis, 2002, 8, 1576-1577.	0.4	0
323	Imaging Ice Embedded Single Particles With A 16 Megapixel CCD Camera. Microscopy and Microanalysis, 2003, 9, 962-963.	0.4	0
324	High-Resolution 3D Reconstruction of Cytoplasmic Polyhedrosis Virus. Microscopy and Microanalysis, 2003, 9, 1366-1367.	0.4	0

#	Article	IF	Citations
325	Cryo-EM and Mass Spectrometry Based Investigations of Viral Capsid Morphogenesis. Microscopy and Microanalysis, 2004, 10, 226-227.	0.4	0
326	GroEL Structure at 6 \tilde{A} Resolution Using Electron Cryomicroscopy and EMAN. Microscopy and Microanalysis, 2004, 10, 1494-1495.	0.4	0
327	Subnanometer Imaging of Spherical Viruses in a JEOL3000 SFF Liquid Helium Electron Cryomicroscope. Microscopy and Microanalysis, 2004, 10, 1504-1505.	0.4	0
328	Electron Cryo-Tomography of Cilia-Associated Structures of Rod Photoreceptors. Biophysical Journal, 2011, 100, 338a.	0.5	0
329	Reprogramming an ATP-Driven Biological Machine into a Light-Gated Protein Nanocage. Biophysical Journal, 2014, 106, 439a.	0.5	0
330	Cryo-EM Studies of RyR1 Channel in Detergent-Free Aqueous Environment. Biophysical Journal, 2014, 106, 109a.	0.5	0
331	Editorial overview: Virus structure and function. Current Opinion in Virology, 2014, 5, viii-ix.	5.4	0
332	Seeing the Portal in Membrane-containing Bacteriophage PRD1 by Cryo-EM. Microscopy and Microanalysis, 2014, 20, 1250-1251.	0.4	0
333	Modeling Protein Structure in Macromolecular Assemblies at Near Atomic Resolutions. Microscopy and Microanalysis, 2015, 21, 541-542.	0.4	0
334	IP3R1 - Assessing Map Interpretability at Near Atomic Resolution. Microscopy and Microanalysis, 2015, 21, 543-544.	0.4	0
335	Structure of the AcrABZ-TolC Multidrug Efflux Pump in a Drug-Bound State. Biophysical Journal, 2016, 110, 10a.	0.5	0
336	Resolution and Probabilistic Structural Models of Subcomponents Derived from CryoEM Maps of Mature P22 Bacteriophage. Biophysical Journal, 2016, 110, 158a.	0.5	0
337	Novel Mechanism of Gating in the TrkH-TrkA Complex. Biophysical Journal, 2017, 112, 21a-22a.	0.5	0
338	Going Deeper in Cryo Electron Tomography with Neural Networks. Microscopy and Microanalysis, 2017, 23, 814-815.	0.4	0
339	Purification of AcrAB-TolC Multidrug Efflux Pump for Cryo-EM Analysis. Methods in Molecular Biology, 2018, 1700, 71-81.	0.9	0
340	GENFIRE: from Precisely Localizing Single Atoms in Materials to High Resolution 3D Imaging of Cellular Structures. Microscopy and Microanalysis, 2018, 24, 1446-1447.	0.4	0
341	Sub-Ãngström-resolution MicroED Using a Direct Detection Camera. Microscopy and Microanalysis, 2020, 26, 1524-1526.	0.4	О
342	Preface. Progress in Biophysics and Molecular Biology, 2021, 160, 1.	2.9	0

#	Article	IF	CITATIONS
343	Explore the complexity of proteins with an expanded CryoET data processing pipeline. Microscopy and Microanalysis, 2021, 27, 2816-2817.	0.4	0
344	Resolve cathode electrolyte interphase in lithium batteries with cryo-EM. Microscopy and Microanalysis, 2021, 27, 2188-2190.	0.4	0
345	High Resolution Data Collection at S2C2, a National CryoEM Center. Microscopy and Microanalysis, 2021, 27, 1152-1154.	0.4	0
346	A Digital Atlas to Characterize the Mouse Brain Transcriptome. PLoS Computational Biology, 2005, preprint, e41.	3.2	0
347	Conformational Changes of Eukaryotic Chaperonin TRiC/CCT in the Nucleotide Cycle Revealed by CryoEM. FASEB Journal, 2009, 23, 850.12.	0.5	0
348	Rocking Motion of the Equatorial Domains of a Group II Chaperonin between Two Biochemical States Revealed by Singleâ€Particle Cryoâ€EM at Nearâ€atomic and Subnanometer Resolutions. FASEB Journal, 2009, 23, 673.12.	0.5	0
349	4.0 à Resolution Cryoâ€EM Structure of the Mammalian Chaperonin TRiC/CCT Reveals its Unique Subunit Arrangement. FASEB Journal, 2010, 24, 684.5.	0.5	0
350	Cryo-EM analysis of Ebola virus nucleocapsid-like assembly. STAR Protocols, 2022, 3, 101030.	1.2	0
351	Title is missing!. , 2020, 18, e3000827.		0
352	Title is missing!. , 2020, 18, e3000827.		0
353	Title is missing!. , 2020, 18, e3000827.		0
354	Title is missing!. , 2020, 18, e3000827.		0
355	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
356	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
357	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
358	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion., 2021, 17, e1008961.		0