Alessandro Grillo

List of Publications by Citations

Source: https://exaly.com/author-pdf/6659063/alessandro-grillo-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31 528 12 22 g-index

34 754 ext. papers ext. citations 5.2 avg, IF L-index

#	Paper	IF	Citations
31	Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 1800657	15.6	119
30	Pressure-Tunable Ambipolar Conduction and Hysteresis in Thin Palladium Diselenide Field Effect Transistors. <i>Advanced Functional Materials</i> , 2019 , 29, 1902483	15.6	65
29	Gas dependent hysteresis in MoS 2 field effect transistors. 2D Materials, 2019 , 6, 045049	5.9	47
28	Field Emission in Ultrathin PdSe2 Back-Gated Transistors. Advanced Electronic Materials, 2020, 6, 20000	9 6 .4	35
27	Contact resistance and mobility in back-gate graphene transistors. <i>Nano Express</i> , 2020 , 1, 010001	2	28
26	Field Emission Characterization of MoS Nanoflowers. <i>Nanomaterials</i> , 2019 , 9,	5.4	24
25	High field-emission current density from EGa2O3 nanopillars. <i>Applied Physics Letters</i> , 2019 , 114, 193101	3.4	23
24	Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors. <i>ACS Applied Materials & District Materials & Di</i>	9.5	22
23	Bias Tunable Photocurrent in Metal-Insulator-Semiconductor Heterostructures with Photoresponse Enhanced by Carbon Nanotubes. <i>Nanomaterials</i> , 2019 , 9,	5.4	20
22	Electron Irradiation of Metal Contacts in Monolayer MoS Field-Effect Transistors. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	18
21	WS Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. <i>Small</i> , 2020 , 16, e2002880	11	16
20	Coexistence of Negative and Positive Photoconductivity in Few-Layer PtSe2 Field-Effect Transistors. <i>Advanced Functional Materials</i> ,2105722	15.6	14
19	Graphene Schottky Junction on Pillar Patterned Silicon Substrate. <i>Nanomaterials</i> , 2019 , 9,	5.4	12
18	Gate-Controlled Field Emission Current from MoS2 Nanosheets. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000838	6.4	12
17	A CurrentWoltage Model for Double Schottky Barrier Devices. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000979	6.4	10
16	Graphene-Silicon Device for Visible and Infrared Photodetection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 47895-47903	9.5	10
15	Impact of Impurities on the Electrical Conduction of Anisotropic Two-Dimensional Materials. <i>Physical Review Applied</i> , 2020 , 13,	4.3	9

LIST OF PUBLICATIONS

14	Environmental effects on transport properties of PdSe2 field effect transistors. <i>Materials Today: Proceedings</i> , 2020 , 20, 50-53	1.4	9	
13	Field Emission Characteristics of InSb Patterned Nanowires. <i>Advanced Electronic Materials</i> , 2020 , 6, 200	0 6 .Q2	8	
12	Field emission from two-dimensional GeAs. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 105302	3	7	
11	Effect of silicon doping on graphene/silicon Schottky photodiodes. <i>Materials Today: Proceedings</i> , 2020 , 20, 82-86	1.4	7	
10	Field emission from mono and two-dimensional nanostructures. <i>Materials Today: Proceedings</i> , 2020 , 20, 64-68	1.4	3	
9	Memory effects in black phosphorus field effect transistors. 2D Materials, 2022, 9, 015028	5.9	3	
8	Electrical Conduction and Photoconduction in PtSe2 Ultrathin Films. <i>Materials Proceedings</i> , 2021 , 4, 28	0.3	2	
7	Air Pressure, Gas Exposure and Electron Beam Irradiation of 2D Transition Metal Dichalcogenides. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5840	2.6	2	
6	Persistent Photoconductivity, Hysteresis and Field Emission in MoS2 Back-Gate Field-Effect Transistors 2018 ,		2	
5	Field Emission from Graphene Layers. Lecture Notes in Electrical Engineering, 2023, 213-220	0.2	1	
4	Sensors Based on Multiwalled Carbon Nanotubes. <i>Materials Proceedings</i> , 2021 , 4, 59	0.3	0	
3	Temperature Dependence of Germanium Arsenide Field-Effect Transistors Electrical Properties. <i>Materials Proceedings</i> , 2021 , 4, 26	0.3		
2	Molybdenum Disulfide Field Effect Transistors under Electron Beam Irradiation and External Electric Fields. <i>Materials Proceedings</i> , 2021 , 4, 25	0.3		
1	Direct Contacting of 2D Nanosheets by Metallic Nanoprobes. <i>Materials Proceedings</i> , 2021 , 4, 16	0.3		