Jiaying Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6658936/publications.pdf

Version: 2024-02-01

361413 361022 1,240 39 20 35 h-index citations g-index papers 39 39 39 353 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets. Acta Materialia, 2017, 128, 22-30.	7.9	144
2	Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality. Scientific Reports, 2016, 6, 32200.	3.3	106
3	Improved thermal stability of Nd-Ce-Fe-B sintered magnets by Y substitution. Scripta Materialia, 2017, 131, 11-14.	5.2	77
4	Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification. Journal of Magnetism and Magnetic Materials, 2014, 355, 131-135.	2.3	69
5	Attaining high magnetic performance in as-sintered multi-main-phase Nd-La-Ce-Fe-B magnets: Toward skipping the post-sinter annealing treatment. Acta Materialia, 2019, 169, 248-259.	7.9	66
6	Manipulating Ce Valence in RE2Fe14B Tetragonal Compounds by La-Ce Co-doping: Resultant Crystallographic and Magnetic Anomaly. Scientific Reports, 2016, 6, 30194.	3.3	65
7	Post-sinter annealing influences on coercivity of multi-main-phase Nd-Ce-Fe-B magnets. Acta Materialia, 2018, 146, 97-105.	7.9	58
8	Rapid coercivity increment of Nd–Fe–B sintered magnets by Dy69Ni31 grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2014, 370, 76-80.	2.3	55
9	Evolution of REFe2 (RE = rare earth) phase in Nd-Ce-Fe-B magnets and resultant Ce segregation. Scripta Materialia, 2019, 170, 150-155.	5.2	47
10	Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding (Nd, Pr)-H powders. Journal of Alloys and Compounds, 2017, 721, 1-7.	5 . 5	45
11	Grain boundary engineering towards high-figure-of-merit Nd-Ce-Fe-B sintered magnets: Synergetic effects of (Nd, Pr)Hx and Cu co-dopants. Acta Materialia, 2021, 204, 116529.	7.9	44
12	Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys. Materials Characterization, 2019, 148, 208-213.	4.4	38
13	Coercivity enhancement of Nd–Fe–B sintered magnets with intergranular adding (Pr, Dy, Cu)â^'Hx powders. Journal of Magnetism and Magnetic Materials, 2016, 399, 159-163.	2.3	37
14	Mechanical Properties of La–Ce-Substituted Nd–Fe–B Magnets. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	33
15	Coercivity enhancement for Nd-La-Ce-Fe-B sintered magnets by tailoring La and Ce distributions. Journal of Alloys and Compounds, 2018, 763, 854-860.	5 . 5	26
16	Balancing the microstructure and chemical heterogeneity of multi-main-phase Nd-Ce-La-Fe-B sintered magnets by tailoring the liquid-phase-sintering. Materials and Design, 2020, 186, 108308.	7.0	25
17	Grain boundary restructuring and La/Ce/Y application in Nd–Fe–B magnets*. Chinese Physics B, 2019, 28, 077507.	1.4	24
18	PrAl and PrDyAl diffusion into Nd-La-Ce-Fe-B sintered magnets: Critical role of surface microstructure in the magnetic performance. Applied Surface Science, 2020, 529, 147028.	6.1	24

#	Article	IF	Citations
19	Effects of (Nd, Pr)-Hx addition on the coercivity of Nd-Ce-Y-Fe-B sintered magnet. Journal of Alloys and Compounds, 2019, 772, 656-662.	5. 5	23
20	Crucial role of the REFe2 intergranular phase on corrosion resistance of Nd-La-Ce-Fe-B sintered magnets. Journal of Alloys and Compounds, 2018, 735, 2225-2235.	5.5	21
21	A reliable route for relieving the constraints of multi-main-phase Nd–La–Ce–Fe–B sintered magnets at high La–Ce substitution: (Pr, Nd)H grain boundary diffusion. Scripta Materialia, 2020, 185, 122-128.	5.2	21
22	Magnetic properties and corrosion resistance of Nd–Fe–B magnets with Nd64Co36 intergranular addition. Journal of Alloys and Compounds, 2014, 616, 345-349.	5.5	20
23	Concurrent improvements of corrosion resistance and coercivity in Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase. Journal of Materials Science and Technology, 2022, 110, 239-245.	10.7	18
24	Merits of Pr80Ga20 grain boundary diffusion process towards high coercivityâ€'remanence synergy of Ndâ€'Laâ€'Ceâ€'Feâ€'B sintered magnet. Acta Materialia, 2022, 231, 117873.	7.9	18
25	Improved corrosion resistance of low rare-earth Nd–Fe–B sintered magnets by Nd6Co13Cu grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2015, 379, 186-191.	2.3	17
26	Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure. Corrosion Science, 2020, 177, 108972.	6.6	15
27	Synergistic effect of V2O5 and Bi2O3 on the grain boundary structure of high-frequency NiCuZn ferrite ceramics. Journal of Advanced Ceramics, 2022, 11, 912-921.	17.4	14
28	Comparison of (Pr, Nd)H grain boundary restructuring and diffusion on the magnetic properties of Nd–La–Ce–Fe–B sintered magnet. Journal of Alloys and Compounds, 2021, 868, 159154.	5.5	13
29	Unusual surface microstructural evolution of Nd–Ce–Fe–B sintered magnets by (Nd, Pr)Hx grain boundary diffusion. Materials Characterization, 2022, 190, 112073.	4.4	12
30	High-performance Nd-Fe-B sintered magnets via co-doping high-melting-point Zr and low-melting-point Dy71.5Fe28.5. Journal of Magnetism and Magnetic Materials, 2019, 487, 165356.	2.3	10
31	Promoting the La solution in 2:14:1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity. Journal of Materials Science and Technology, 2021, 62, 195-202.	10.7	10
32	Microstructure and magnetic performance of Nd–Y–Ce–Fe–B sintered magnets after annealing. Rare Metals, 2022, 41, 859-864.	7.1	10
33	Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films. Scientific Reports, 2016, 6, 24410.	3.3	9
34	Nd-Fe-B sintered magnets with low rare earth content fabricated via Dy71.5Fe28.5 grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2020, 498, 166162.	2.3	8
35	Effects of (Nd, Pr)H <italic>x</italic> Intergranular Addition on the Mechanical Properties of Nd–Pr–Ce–Fe–B Sintered Magnets. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	6
36	High synergy of coercivity and thermal stability in resource-saving Nd-Ce-Y-Fe-B melt-spun ribbons. Journal of Alloys and Compounds, 2021, 882, 160731.	5 . 5	4

JIAYING JIN

#	Article	IF	CITATIONS
37	Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips. AIP Advances, 2018, 8, 056233.	1.3	3
38	Exchange interaction and demagnetization process of high-abundance rare-earth magnets sintered using dual alloy method. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	3
39	Microstructure and electromagnetic performance of the FeCoAlON films tuned by N2 pressure during reactive pulsed laser deposition. Journal of Alloys and Compounds, 2018, 739, 866-872.	5. 5	2