
Mark A Bissett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6658477/publications.pdf Version: 2024-02-01

MADE A RISSETT

#	Article	IF	CITATIONS
1	Characterization of MoS ₂ –Graphene Composites for High-Performance Coin Cell Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 17388-17398.	8.0	388
2	3D Printing of Freestanding MXene Architectures for Currentâ€Collectorâ€Free Supercapacitors. Advanced Materials, 2019, 31, e1902725.	21.0	311
3	Desalination and Nanofiltration through Functionalized Laminar MoS ₂ Membranes. ACS Nano, 2017, 11, 11082-11090.	14.6	275
4	Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, 46, 4572-4613.	38.1	275
5	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	4.4	266
6	Comparison of Two-Dimensional Transition Metal Dichalcogenides for Electrochemical Supercapacitors. Electrochimica Acta, 2016, 201, 30-37.	5.2	211
7	Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014, 16, 11124-11138.	2.8	199
8	Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain. ACS Nano, 2013, 7, 10335-10343.	14.6	157
9	Synthesis of Lateral Size-Controlled Monolayer 1 <i>H-</i> MoS ₂ @Oleylamine as Supercapacitor Electrodes Chemistry of Materials, 2016, 28, 657-664.	6.7	134
10	Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochimica Acta, 2016, 197, 228-240.	5.2	116
11	Photoelectrochemistry of Pristine Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 2023-2032.	9.1	107
12	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	9.1	98
13	Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film. Applied Physics Express, 2013, 6, 075101.	2.4	83
14	MXeneâ€Based Anodes for Metalâ€ i on Batteries. Batteries and Supercaps, 2020, 3, 214-235.	4.7	75
15	Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO ₂ Batteries: Implementation of Charging Process by Electrodeposition of MnO ₂ . ChemSusChem, 2020, 13, 4103-4110.	6.8	74
16	Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. ACS Nano, 2012, 6, 10229-10238.	14.6	73
17	Asymmetric MoS ₂ /Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Advanced Materials, 2016, 28, 8256-8264.	21.0	64
18	Electron transfer kinetics on natural crystals of MoS ₂ and graphite. Physical Chemistry Chemical Physics, 2015, 17, 17844-17853.	2.8	57

MARK A BISSETT

#	Article	IF	CITATIONS
19	Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes. Advanced Functional Materials, 2022, 32, .	14.9	52
20	Effect of functional groups on the agglomeration of graphene in nanocomposites. Composites Science and Technology, 2018, 163, 116-122.	7.8	51
21	Investigation of Voltage Range and Selfâ€Discharge in Aqueous Zincâ€lon Hybrid Supercapacitors. ChemSusChem, 2021, 14, 1700-1709.	6.8	51
22	Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. Journal of Physical Chemistry Letters, 2019, 10, 617-623.	4.6	50
23	Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene. Journal of Physical Chemistry C, 2013, 117, 3152-3159.	3.1	46
24	Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Applied Polymer Materials, 2020, 2, 3525-3534.	4.4	44
25	Tunable charge/size selective ion sieving with ultrahigh water permeance through laminar graphene membranes. Carbon, 2020, 156, 119-129.	10.3	41
26	Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochimica Acta, 2016, 222, 361-369.	5.2	40
27	Strain engineering in monolayer WS ₂ and WS ₂ nanocomposites. 2D Materials, 2020, 7, 045022.	4.4	40
28	Electron transfer through \hat{l}_{\pm} -peptides attached to vertically aligned carbon nanotube arrays: a mechanistic transition. Chemical Communications, 2012, 48, 1132-1134.	4.1	36
29	Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors. Journal of Power Sources, 2021, 516, 230663.	7.8	36
30	A single step strategy to fabricate graphene fibres via electrochemical exfoliation for micro-supercapacitor applications. Electrochimica Acta, 2019, 299, 645-653.	5.2	35
31	Photocurrent Response from Vertically Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 6778-6783.	3.1	31
32	Self-Assembled 1T-MoS ₂ /Functionalized Graphene Composite Electrodes for Supercapacitor Devices. ACS Applied Energy Materials, 2022, 5, 61-70.	5.1	31
33	Hydrogen Evolution at Liquid Liquid Interfaces Catalyzed by 2D Materials. ChemNanoMat, 2017, 3, 428-435.	2.8	29
34	Electrochemical intercalation of MoO3-MoS2 composite electrodes: Charge storage mechanism of non-hydrated cations. Electrochimica Acta, 2019, 307, 176-187.	5.2	29
35	Increased chemical reactivity achieved by asymmetrical †Janus' functionalisation of graphene. RSC Advances, 2014, 4, 52215-52219.	3.6	28
36	Black phosphorus with near-superhydrophobic properties and long-term stability in aqueous media. Chemical Communications, 2018, 54, 3831-3834.	4.1	28

MARK A BISSETT

#	Article	IF	CITATIONS
37	Fabrication of a Graphene-Based Paper-Like Electrode for Flexible Solid-State Supercapacitor Devices. Journal of the Electrochemical Society, 2018, 165, A3481-A3486.	2.9	27
38	Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. Journal of Materials Chemistry C, 2016, 4, 8687-8695.	5.5	25
39	Graphene–Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding. Advanced Electronic Materials, 2020, 6, 2000429.	5.1	25
40	Hybrid Graphene/Carbon Nanofiber Wax Emulsion for Paperâ€Based Electronics and Thermal Management. Advanced Electronic Materials, 2020, 6, 2000232.	5.1	24
41	Joule Heating and mechanical properties of epoxy/graphene based aerogel composite. Composites Science and Technology, 2022, 218, 109199.	7.8	23
42	Potential dependent ionic sieving through functionalized laminar MoS ₂ membranes. 2D Materials, 2020, 7, 015030.	4.4	21
43	Tunable doping of graphene nanoribbon arrays by chemical functionalization. Nanoscale, 2015, 7, 3572-3580.	5.6	19
44	Deformation of and Interfacial Stress Transfer in Ti ₃ C ₂ MXene–Polymer Composites. ACS Applied Materials & Interfaces, 2022, 14, 10681-10690.	8.0	19
45	Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices. Physical Chemistry Chemical Physics, 2011, 13, 6059.	2.8	18
46	Effect of graphene nanoplatelets on the mechanical and gas barrier properties of woven carbon fibre/epoxy composites. Journal of Materials Science, 2021, 56, 19538-19551.	3.7	17
47	Reduced graphene oxide/Fe-phthalocyanine nanosphere cathodes for lithium-ion batteries. Journal of Materials Science, 2018, 53, 9170-9179.	3.7	16
48	Synthetic 2-D lead tin sulfide nanosheets with tuneable optoelectronic properties from a potentially scalable reaction pathway. Chemical Science, 2019, 10, 1035-1045.	7.4	16
49	Anodic dissolution growth of metal–organic framework HKUST-1 monitored <i>via in situ</i> electrochemical atomic force microscopy. CrystEngComm, 2018, 20, 4421-4427.	2.6	15
50	Graphene-Based Materials as Strain Sensors in Glass Fiber/Epoxy Model Composites. ACS Applied Materials & Interfaces, 2019, 11, 31338-31345.	8.0	14
51	Comparison of carbon nanotube modified electrodes for photovoltaic devices. Carbon, 2012, 50, 2431-2441.	10.3	13
52	Enhanced Photoluminescence of Solution-Exfoliated Transition Metal Dichalcogenides by Laser Etching. ACS Omega, 2017, 2, 738-745.	3.5	13
53	Interlayer and interfacial stress transfer in hBN nanosheets. 2D Materials, 2021, 8, 035058.	4.4	13
54	Simultaneous Electrochemical Exfoliation and Chemical Functionalization of Graphene for Supercapacitor Electrodes. Journal of the Electrochemical Society, 2020, 167, 110531.	2.9	11

MARK A BISSETT

#	Article	IF	CITATIONS
55	The Modified Liquidâ€Liquid Interface: The Effect of an Interfacial Layer of MoS ₂ on Ion Transfer. ChemElectroChem, 2021, 8, 4445-4455.	3.4	11
56	A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Advanced Materials Technologies, 2022, 7, .	5.8	11
57	Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 2022, 218, 109131.	7.8	10
58	Designing Functionalized Porphyrins Capable of Pseudo-2D Self-Assembly on Surfaces. Organic Letters, 2008, 10, 2943-2946.	4.6	9
59	Electrochemistry and Photocurrent Response from Vertically-Aligned Chemically-Functionalized Single-Walled Carbon Nanotube Arrays. Journal of the Electrochemical Society, 2011, 158, K53.	2.9	9
60	Sustainable, High-Barrier Polyaleuritate/Nanocellulose Biocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 10682-10690.	6.7	9
61	Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2011, 110, .	2.5	6
62	Dye functionalisation of PAMAM-type dendrons grown from vertically aligned single-walled carbon nanotube arrays for light harvesting antennae. Journal of Materials Chemistry, 2011, 21, 18597.	6.7	6
63	Photocurrent response from vertically aligned single-walled carbon nanotube arrays. , 2010, , .		5
64	High-order graphene oxide nanoarchitectures. Nanoscale, 2011, 3, 3076.	5.6	5
65	Long-range oriented graphene-like nanosheets with corrugated structure. Chemical Communications, 2018, 54, 13543-13546.	4.1	3
66	MoS2 Nanosheet-Coated Carbon Fibers as Strain Sensors in Epoxy Composites. ACS Applied Nano Materials, 2021, 4, 9181-9189.	5.0	3
67	The modified liquid liquid interface: An electrochemical route for the electrode-less synthesis of MoS2 metal composite thin films. Electrochimica Acta, 2022, 424, 140609.	5.2	3
68	MXeneâ€Based Anodes for Metalâ€ion Batteries. Batteries and Supercaps, 2020, 3, 211-211.	4.7	1
69	Raman Characterisation of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapour Deposition. Materials Science Forum, 2011, 700, 112-115.	0.3	0
70	The Modified Liquidâ€Liquid Interface: The Effect of an Interfacial Layer of MoS 2 on Ion Transfer. ChemElectroChem, 2021, 8, 4393.	3.4	0
71	Graphene Wrapped Siox/C Hollow Spheres Composites Via Molecular Polymerization As High Performance Libs Anodes. ECS Meeting Abstracts, 2022, MA2022-01, 419-419.	0.0	0