Victoria Leiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6658037/publications.pdf

Version: 2024-02-01

		687363	839539
19	397	13	18
papers	citations	h-index	g-index
19	19	19	630
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity. Acta Biomaterialia, 2022, 137, 186-198.	8.3	11
2	Versatile fully biodegradable dendritic nanotherapeutics. Biomaterials, 2022, 281, 121356.	11.4	6
3	Thiol–Norbornene Photoclick Chemistry for Grafting Antimicrobial Peptides onto Chitosan to Create Antibacterial Biomaterials. ACS Applied Polymer Materials, 2022, 4, 5012-5026.	4.4	9
4	Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics, 2020, 12, 192.	4.5	16
5	Dendrimers as Powerful Building Blocks in Central Nervous System Disease: Headed for Successful Nanomedicine. Advanced Functional Materials, 2018, 28, 1700313.	14.9	29
6	PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. Journal of Controlled Release, 2018, 291, 65-79.	9.9	65
7	Conjugation Chemistry Principles and Surface Functionalization of Nanomaterials. , 2018, , 35-66.		6
8	Fine tuning neuronal targeting of nanoparticles by adjusting the ligand grafting density and combining PEG spacers of different length. Acta Biomaterialia, 2018, 78, 247-259.	8.3	18
9	Biodegradable PEG–dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. Journal of Materials Chemistry B, 2017, 5, 4901-4917.	5.8	15
10	Delivering siRNA with Dendrimers: In Vivo Applications. Current Gene Therapy, 2017, 17, 105-119.	2.0	15
11	A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance. Acta Biomaterialia, 2016, 46, 129-140.	8.3	9
12	Delivery of Splice Switching Oligonucleotides by Amphiphilic Chitosan-Based Nanoparticles. Molecular Pharmaceutics, 2016, 13, 344-356.	4.6	14
13	The Present and the Future of Degradable Dendrimers and Derivatives in Theranostics. Bioconjugate Chemistry, 2015, 26, 1182-1197.	3.6	55
14	Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes. Soft Matter, 2015, 11, 8113-8125.	2.7	30
15	Using a Combination of Magnetic Anisotropic Effects for the Configurational Assignment of Amino Alcohols. Chemistry - an Asian Journal, 2010, 5, 2106-2112.	3.3	8
16	Cross Interaction Between Auxiliaries: The Chirality of Amino Alcohols by NMR. Organic Letters, 2008, 10, 2729-2732.	4.6	22
17	Assigning the Configuration of Amino Alcohols by NMR: A Single Derivatization Method. Organic Letters, 2008, 10, 2733-2736.	4.6	24
18	Absolute configuration of amino alcohols by 1H-NMR. Chemical Communications, 2005, , 5554.	4.1	19

VICTORIA LEIRO

#	Article	IF	CITATIONS
19	Boc–phenylglycine: a chiral solvating agent for the assignment of the absolute configuration of amino alcohols and their ethers by NMR. Tetrahedron: Asymmetry, 2004, 15, 1825-1829.	1.8	26