Jernej Jakse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6657673/publications.pdf

Version: 2024-02-01

201674 276875 2,375 119 27 41 h-index citations g-index papers 123 123 123 2185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of microRNA-like Small RNAs in Pathogenic Plant Fungus Verticillium nonalfalfae Using High-Throughput Sequencing and qPCR and RLM-RACE Validation. International Journal of Molecular Sciences, 2022, 23, 900.	4.1	5
2	Virome Status of Preclonal Candidates of Grapevine Varieties (Vitis vinifera L.) From the Slovenian Wine-Growing Region Primorska as Determined by High-Throughput Sequencing. Frontiers in Microbiology, 2022, 13, 830866.	3.5	5
3	Reference-Grade Genome and Large Linear Plasmid of Streptomyces rimosus: Pushing the Limits of Nanopore Sequencing. Microbiology Spectrum, 2022, 10, e0243421.	3.0	5
4	Small RNA Sequencing and Multiplex RT-PCR for Diagnostics of Grapevine Viruses and Virus-like Organisms. Viruses, 2022, 14, 921.	3.3	1
5	The complete chloroplast genome of dalmatian pyrethrum (<i>Tanacetum cinerariifolium</i> (Trevir.)) Tj ETQq1 1 Resources, 2022, 7, 775-777.	0.784314 0.4	rgBT /Ov <mark>erl</mark> o
6	Development of Microsatellite Markers for Tanacetum cinerariifolium (Trevis.) Sch. Bip., a Plant with a Large and Highly Repetitive Genome. Plants, 2022, 11, 1778.	3.5	3
7	Genetic Structure and Core Collection of Olive Germplasm from Albania Revealed by Microsatellite Markers. Genes, 2021, 12, 256.	2.4	15
8	Core RNA Interference Genes Involved in miRNA and Ta-siRNA Biogenesis in Hops and Their Expression Analysis after Challenging with Verticillium nonalfalfae. International Journal of Molecular Sciences, 2021, 22, 4224.	4.1	2
9	First set of microsatellite markers for immortelle (Helichrysum italicum (Roth) G. Don): A step towards the selection of the most promising genotypes for cultivation. Industrial Crops and Products, 2021, 162, 113298.	5.2	12
10	Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum. Scientific Reports, 2021, 11, 8334.	3.3	17
11	Plant genera <i>Cannabis</i> and <i>Humulus</i> share the same pair of wellâ€differentiated sex chromosomes. New Phytologist, 2021, 231, 1599-1611.	7.3	17
12	Towards the Well-Tempered Chloroplast DNA Sequences. Plants, 2021, 10, 1360.	3.5	7
13	High Genetic Diversity and Low Population Differentiation in Wild Hop (Humulus lupulus L.) from Croatia. Applied Sciences (Switzerland), 2021, 11, 6484.	2.5	5
14	Identification and characterization of long non-coding RNA and their response against citrus bark cracking viroid infection in Humulus lupulus. Genomics, 2021, 113, 2350-2364.	2.9	6
15	First report of grapevine satellite virusÂin Slovenia. Journal of Plant Pathology, 2021, 103, 1329-1330.	1.2	5
16	Identification and Characterization of Verticillium nonalfalfae-Responsive MicroRNAs in the Roots of Resistant and Susceptible Hop Cultivars. Plants, 2021, 10, 1883.	3. 5	1
17	Studying RNAi in pathogenic hop fungi <i>Verticillium nonalfalfae</i> . Acta Horticulturae, 2021, , 37-46.	0.2	0
18	Phenolic and miRNA response of resistant hop cultivar †Wye Target' after inoculation with phytopathogenic fungus Verticillium nonalfalfae. Acta Horticulturae, 2021, , 47-54.	0.2	0

#	Article	IF	Citations
19	Ampelographic and molecular characterisation of grapevine varieties in the gene bank of the experimental vineyard †Radmilovac††Serbia. Oeno One, 2021, 55, 129-144.	1.4	2
20	Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. International Journal of Molecular Sciences, 2020, 21, 8700.	4.1	3
21	Molecular Study of Selected Taxonomically Critical Taxa of the Genus Iris L. from the Broader Alpine-Dinaric Area. Plants, 2020, 9, 1229.	3.5	1
22	The Potential of HTS Approaches for Accurate Genotyping in Grapevine (Vitis vinifera L.). Genes, 2020, 11, 917.	2.4	4
23	Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms, 2020, 8, 344.	3.6	9
24	Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop (Humulus) Tj ETQq0 0 0	O rgBT /Ov	verlock 10 Tf
25	Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants. International Journal of Molecular Sciences, 2020, 21, 2498.	4.1	10
26	Studying strands polarity of different viroids and their combinations in infected hop plants. Acta Agriculturae Slovenica, 2020, 115 , .	0.3	0
27	Traditional and molecular methods for the identification of whitefly (Aleyrodidae) species. Acta Agriculturae Slovenica, 2020, 116 , .	0.3	0
28	Morphological and microsatellite analysis of the ancient Montenegrin olive variety  Žutica' revealed different clones. Acta Agriculturae Slovenica, 2020, 116, .	0.3	0
29	First report of powdery mildew of Sonchus oleraceus caused by Golovinomyces sonchicola in Slovenia. Journal of Plant Pathology, 2019, 101, 805-805.	1.2	2
30	Confirming infection of hop plants inoculated with Verticilium nonalfalfae. Data in Brief, 2019, 25, 104355.	1.0	0
31	Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with Verticillium nonalfalfae. Journal of Plant Physiology, 2019, 240, 153008.	3.5	7
32	Evaluation of Disease Severity and Global Transcriptome Response Induced by Citrus bark cracking viroid, Hop latent viroid, and Their Co-Infection in Hop (Humulus lupulus L.). International Journal of Molecular Sciences, 2019, 20, 3154.	4.1	30
33	New Male Specific Markers for Hop and Application in Breeding Program. Scientific Reports, 2019, 9, 14223.	3.3	15
34	Proposal of a New Hybrid Breeding Method Based on Genotyping, Inter-Pollination, Phenotyping and Paternity Testing of Selected Elite F1 Hybrids. Frontiers in Plant Science, 2019, 10, 1111.	3.6	8
35	First report of powdery mildew of Solidago gigantea caused by Golovinomyces asterum var. solidaginis in Slovenia. Journal of Plant Pathology, 2019, 101, 765-765.	1.2	0
36	RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Scientific Reports, 2019, 9, 8651.	3.3	16

#	Article	IF	CITATIONS
37	Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics, 2019, 20, 440.	2.8	25
38	Revisiting the Role of Transcription Factors in Coordinating the Defense Response Against Citrus Bark Cracking Viroid Infection in Commercial Hop (Humulus Lupulus L.). Viruses, 2019, 11, 419.	3.3	22
39	The complete chloroplast genome of Helichrysum italicum (Roth) G. Don (Asteraceae). Mitochondrial DNA Part B: Resources, 2019, 4, 1036-1037.	0.4	5
40	One-step multiplex RT-PCR for simultaneous detection of four viroids from hop (Humulus lupulus L.). European Journal of Plant Pathology, 2019, 154, 273-286.	1.7	6
41	Occurrence of grapevine yellow speckle viroid 1 in autochthonous grapevines in Slovenia. Journal of Plant Pathology, 2019, 101, 397-397.	1.2	1
42	First Report of White Rust of Rocket (<i>Eruca sativa</i>) Caused by <i>Albugo candida</i> in Montenegro. Plant Disease, 2019, 103, 163-163.	1.4	5
43	Viruses Associated with Fig Mosaic Disease in Different Fig Varieties in Montenegro. Plant Pathology Journal, 2019, 35, 32-40.	1.7	6
44	De novo transcriptome of the pallial gland of the date mussel (Lithophaga lithophaga). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 26, 1-9.	1.0	4
45	Genome Sequence of a Lethal Strain of Xylem-Invading <i>Verticillium nonalfalfae</i> Announcements, 2018, 6, .	0.8	13
46	First report of powdery mildew of Helianthus tuberosus caused by Golovinomyces ambrosiae in Slovenia. Journal of Plant Pathology, 2018, 100, 331-331.	1.2	4
47	First report of powdery mildew of Capsella bursa-pastoris caused by Golovinomyces orontii in Slovenia. Journal of Plant Pathology, 2018, 100, 359-359.	1.2	4
48	Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.). Viruses, 2018, 10, 570.	3.3	23
49	Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics, 2018, 19, 739.	2.8	13
50	Comparative assessment of genetic diversity in Albanian olive (Olea europaea L.) using SSRs from anonymous and transcribed genomic regions. Tree Genetics and Genomes, 2018, 14, 1.	1.6	15
51	Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS ONE, 2018, 13, e0198971.	2.5	51
52	Interlaboratory comparison of fig (Ficus carica L.) microsatellite genotyping data and determination of reference alleles. Acta Agriculturae Slovenica, 2018, 111, .	0.3	2
53	Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. Molecular Plant Pathology, 2017, 18, 195-209.	4.2	58
54	Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). Journal of Plant Physiology, 2017, 213, 166-177.	3.5	22

#	Article	IF	CITATIONS
55	Comparative transcriptional analysis of hop responses to infection with Verticillium nonalfalfae. Plant Cell Reports, 2017, 36, 1599-1613.	5 . 6	11
56	Diagnostic techniques for viroids. Plant Pathology, 2017, 66, 339-358.	2.4	23
57	Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE, 2017, 12, e0184528.	2.5	26
58	Identification and validation of novel EST-SSR markers in olives. Scientia Agricola, 2017, 74, 215-225.	1.2	38
59	Identification of Novel Virulence-Associated Proteins Secreted to Xylem by <i>Verticillium nonalfalfae</i> During Colonization of Hop Plants. Molecular Plant-Microbe Interactions, 2016, 29, 362-373.	2.6	14
60	Characterization and defining of a core set of novel microsatellite markers for use in genotyping and diversity study of Adriatic fig (Ficus carica L.) germplasm. Revista Brasileira De Botanica, 2016, 39, 1095-1102.	1.3	6
61	Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics, 2016, 17, 919.	2.8	26
62	Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics, 2016, 17, 69.	2.8	102
63	Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae. PLoS ONE, 2016, 11, e0148525.	2.5	19
64	Deepâ€sequencing revealed <i>Citrus bark cracking viroid</i> (<scp>CBCV</scp> d) as a highly aggressive pathogen on hop. Plant Pathology, 2015, 64, 831-842.	2.4	58
65	Different Gene Expressions of Resistant and Susceptible Hop Cultivars in Response to Infection with a Highly Aggressive Strain of Verticillium albo-atrum. Plant Molecular Biology Reporter, 2015, 33, 689-704.	1.8	28
66	Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics, 2015, 16, 532.	2.8	38
67	Vegetative propagation: linear barriers and somatic mutation affect the genetic structure of a <i>Prunus avium</i> L. stand. Forestry, 2015, 88, 612-621.	2.3	14
68	New Microsatellite Markers for Campanula pyramidalis (Campanulaceae) and Cross-Amplification in Closely Related Species. Applications in Plant Sciences, 2015, 3, 1400117.	2.1	5
69	Paternity Analysis of the Olive Variety "Istrska Belica―and Identification of Pollen Donors by Microsatellite Markers. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	19
70	Development of novel EST-derived resistance gene markers in hop (Humulus lupulus L.). Molecular Breeding, 2014, 33, 61-74.	2.1	6
71	Development and characterization of new polymorphic microsatellite markers for Degenia velebitica (Degen) Hayek (Brassicaceae). Conservation Genetics Resources, 2014, 6, 409-411.	0.8	1
72	First Report of Downy Mildew Caused by Hyaloperonospora camelinae on Camelina sativa in Slovenia. Plant Disease, 2014, 98, 1439-1439.	1.4	1

#	Article	IF	CITATIONS
73	Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genomics, 2013, 14, 360.	2.8	39
74	Identification of quantitative trait loci for resistance to Verticillium wilt and yield parameters in hop (Humulus lupulus L.). Theoretical and Applied Genetics, 2013, 126, 1431-1443.	3.6	29
75	The relationship between molecular variation and variation in the wing shape of three aphid parasitoid species: Aphidius uzbekistanicus Luzhetzki, Aphidius rhopalosiphi De Stefani Perez and Aphidius avenaphis (Fitch) (Hymenoptera: Braconidae: Aphidiinae). Zoologischer Anzeiger, 2013, 252, 41-47.	0.9	21
76	Validation of candidate reference genes in RT-qPCR studies of developing olive fruit and expression analysis of four genes involved in fatty acids metabolism. Molecular Breeding, 2013, 32, 211-222.	2.1	18
77	Application of Microsatellite Markers in Grapevine and Olives. , 2013, , .		5
78	First Report of <i>Hop stunt viroid</i> Infecting Hop in Slovenia. Plant Disease, 2012, 96, 592-592.	1.4	23
79	Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase. Phytochemistry, 2012, 83, 34-42.	2.9	10
80	Development of New Microsatellite Markers for Salvia officinalis L. and Its Potential Use in Conservation-Genetic Studies of Narrow Endemic Salvia brachyodon Vandas. International Journal of Molecular Sciences, 2012, 13, 12082-12093.	4.1	32
81	Ploidy and sex expression in monoecious hop (<i>Humulus lupulus</i>). Botany, 2012, 90, 617-626.	1.0	6
82	First Report of Powdery Mildew Caused by <i>Golovinomyces biocellatus</i> on Common Sage (<i>Salvia officinalis</i>) in Slovenia. Plant Disease, 2012, 96, 1065-1065.	1.4	3
83	On the Identity of Cereal Aphid Parasitoid Wasps <i>Aphidius uzbekistanicus</i> , <i>Aphidius rhopalosiphi</i> , and <i>Aphidius avenaphis</i> (Hymenoptera: Braconidae: Aphidiinae) by Examination of COI Mitochondrial Gene, Geometric Morphometrics, and Morphology. Annals of the Entomological Society of America, 2011, 104, 1221-1232.	2.5	30
84	Development of transcript-associated microsatellite markers for diversity and linkage mapping studies in hop (Humulus lupulus L.). Molecular Breeding, 2011, 28, 227-239.	2.1	15
85	High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT). Theoretical and Applied Genetics, 2011, 122, 1265-1280.	3.6	30
86	New microsatellite markers for <i>Salvia officinalis</i> (Lamiaceae) and crossâ€amplification in closely related species. American Journal of Botany, 2011, 98, e316-8.	1.7	32
87	Fluorescent AFLP fingerprinting of Monilinia fructicola. Journal of Plant Diseases and Protection, 2010, 117, 168-172.	2.9	8
88	Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Molecular Phylogenetics and Evolution, 2010, 54, 488-497.	2.7	64
89	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
90	Identification of QTLs for alpha acid content and yield in hop (Humulus Lupulus L.). Euphytica, 2009, 170, 141-154.	1.2	17

#	Article	IF	Citations
91	Occurrence of <i>Cercospora cantuariensis</i> on hop in Austria and Slovenia. Plant Pathology, 2009, 58, 400-400.	2.4	4
92	Identification of a phytoplasma from the aster yellows group infecting purple coneflower (<i>Echinacea purpurea</i>) in Slovenia. Plant Pathology, 2009, 58, 392-392.	2.4	8
93	Isolation and sequence analysis of NBS–LRR disease resistance gene analogues from hop Humulus lupulus L Plant Science, 2009, 176, 775-782.	3. 6	12
94	Densitometric DNA analysis in agarose electrophoretic gels. Journal of Planar Chromatography - Modern TLC, 2009, 22, 167-170.	1.2	3
95	Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.). Molecular Breeding, 2008, 21, 139-148.	2.1	29
96	The oldest macroremains of Vitis from Slovenia. Vegetation History and Archaeobotany, 2008, 17, 93-102.	2.1	8
97	Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Molecular Genetics and Genomics, 2008, 280, 287-92.	2.1	48
98	First report of <i>Phoma exigua</i> as a pathogen of hop in Slovenia. Plant Pathology, 2008, 57, 381-381.	2.4	3
99	DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers. Scientia Horticulturae, 2008, 115, 223-230.	3.6	52
100	New polymorphic dinucleotide and trinucleotide microsatellite loci for hop <i>Humulus lupulus</i> L Molecular Ecology Resources, 2008, 8, 769-772.	4.8	18
101	AFLP Analysis of Intraspecific Variation Between <i>Monilinia laxa</i> Isolates from Different Hosts. Plant Disease, 2008, 92, 1616-1624.	1.4	27
102	Segregations for Onion Bulb Colors Reveal That Red Is Controlled by at Least Three Loci. Journal of the American Society for Horticultural Science, 2008, 133, 42-47.	1.0	34
103	Production and genetic evaluation of interspecific hybrids within the genus <i>Sambucus</i> Breeding, 2007, 126, 628-633.	1.9	20
104	Development of microsatellite markers in the common fig, Ficus carica L. Molecular Ecology Notes, 2007, 7, 1311-1314.	1.7	28
105	Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency. Theoretical and Applied Genetics, 2007, 114, 815-822.	3. 6	57
106	Microsatellite Marker for Homozygosity Testing of Putative Doubled Haploids and Characterization of Mimulus Species Derived by a Cross-genera Approach. Journal of the American Society for Horticultural Science, 2007, 132, 659-663.	1.0	8
107	Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology, 2006, 116, 301-314.	1.7	44
108	Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice. Theoretical and Applied Genetics, 2006, 114, 31-39.	3.6	13

#	Article	IF	CITATIONS
109	Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Molecular Genetics and Genomics, 2005, 274, 197-204.	2.1	110
110	The isolation and characterisation of microsatellites in hop (Humulus lupulus L.). Plant Science, 2005, 168, 213-221.	3.6	49
111	Single Nucleotide Polymorphisms, Indels, and Simple Sequence Repeats for Onion Cultivar Identification. Journal of the American Society for Horticultural Science, 2005, 130, 912-917.	1.0	50
112	Identification and Differentiation of Hop Varieties Using Simple Sequence Repeat Markers. Journal of the American Society of Brewing Chemists, 2004, 62, 1-7.	1.1	20
113	Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica, 2004, 136, 93-102.	1.2	79
114	Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome, 2004, 47, 889-899.	2.0	38
115	Development of Pathotype-Specific SCAR Markers for Detection of Verticillium albo-atrum Isolates from Hop. Plant Disease, 2004, 88, 1115-1122.	1.4	32
116	Characterization of Verticillium albo-atrum Field Isolates Using Pathogenicity Data and AFLP Analysis. Plant Disease, 2003, 87, 633-638.	1.4	44
117	Eleven new microsatellites for hop (Humulus lupulus L.). Molecular Ecology Notes, 2002, 2, 544-546.	1.7	36
118	High throughput isolation of microsatellites in hop (Humulus lupulus L.). Plant Molecular Biology Reporter, 2001, 19, 217-226.	1.8	20
119	Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome, 2001, 44, 773-782.	2.0	68