

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6657364/publications.pdf Version: 2024-02-01

PENC YAO

#	ARTICLE	IF	CITATIONS
1	Occurrence, congener patterns, and potential ecological risk of chlorinated paraffins in sediments of Yangtze River Estuary and adjacent East China Sea. Environmental Monitoring and Assessment, 2022, 194, 329.	1.3	4
2	Organophosphate esters and synthetic musks in the sediments of the Yangtze River Estuary and adjacent East China Sea: Occurrence, distribution, and potential ecological risks. Marine Pollution Bulletin, 2022, 179, 113661.	2.3	9
3	Controls on Organic Carbon Burial in the Eastern China Marginal Seas: A Regional Synthesis. Global Biogeochemical Cycles, 2021, 35, e2020GB006608.	1.9	41
4	Vertical diversity and association pattern of total, abundant and rare microbial communities in deepâ€sea sediments. Molecular Ecology, 2021, 30, 2800-2816.	2.0	41
5	Effects of river damming and delta erosion on organic carbon burial in the Changjiang Estuary and adjacent East China Sea inner shelf. Science of the Total Environment, 2021, 793, 148610.	3.9	21
6	Coastal Upwelling Combined With the River Plume Regulates Hypoxia in the Changjiang Estuary and Adjacent Inner East China Sea Shelf. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017740.	1.0	19
7	Vertical variation in Vibrio community composition in Sansha Yongle Blue Hole and its ability to degrade macromolecules. Marine Life Science and Technology, 2020, 2, 60-72.	1.8	32
8	Efficient sequestration of terrigenous organic carbon in the New Britain Trench. Chemical Geology, 2020, 533, 119446.	1.4	19
9	Occurrence of Halogenated Organic Pollutants in Hadal Trenches of the Western Pacific Ocean. Environmental Science & Technology, 2020, 54, 15821-15828.	4.6	36
10	Spatial heterogeneity of organic carbon cycling in sediments of the northern Yap Trench: Implications for organic carbon burial. Marine Chemistry, 2020, 223, 103813.	0.9	7
11	Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME Journal, 2020, 14, 1463-1478.	4.4	153
12	Carbon Cycling in the World's Deepest Blue Hole. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005307.	1.3	17
13	Puteibacter caeruleilacunae gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from Yongle Blue Hole in the South China Sea. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1623-1629.	0.8	9
14	Deposition flux and mass inventory of polychlorinated biphenyls in sediments of the Yangtze River Estuary and inner shelf, East China Sea: Implications for contributions of large-river input and e-waste dismantling. Science of the Total Environment, 2019, 647, 1222-1229.	3.9	19
15	Spatial-temporal variation of Aureococcus anophagefferens blooms in relation to environmental factors in the coastal waters of Qinhuangdao, China. Harmful Algae, 2019, 86, 106-118.	2.2	16
16	A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary. Geochimica Et Cosmochimica Acta, 2019, 245, 290-303.	1.6	29
17	The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3556-3569.	1.3	38
18	A New Perspective for Assessing Water Transport and Associated Retention Effects in a Large Reservoir. Geophysical Research Letters, 2018, 45, 9642-9650.	1.5	13

Peng Yao

#	Article	IF	CITATIONS
19	Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas. Systematic and Applied Microbiology, 2018, 41, 658-668.	1.2	19
20	Distribution, composition, and ecological risk of surface sedimental polychlorinated naphthalenes in the East China Sea. Marine Pollution Bulletin, 2018, 135, 90-94.	2.3	10
21	The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas. Chemical Geology, 2018, 495, 104-117.	1.4	58
22	Hydrographic features of the Yongle blue hole in the South China Sea and their influential factors. Chinese Science Bulletin, 2018, 63, 2184-2186.	0.4	10
23	Controls on vertical nutrient distributions in the Sansha Yongle Blue Hole, South China Sea. Chinese Science Bulletin, 2018, 63, 2393-2402.	0.4	10
24	Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf. Journal of Marine Systems, 2017, 172, 64-74.	0.9	26
25	Characterization of polychlorinated biphenyl congeners in surface sediments of the Changjiang Estuary and adjacent shelf by high-resolution sampling and high-resolution mass spectrometry. Marine Pollution Bulletin, 2017, 124, 496-501.	2.3	7
26	Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas. Frontiers in Microbiology, 2016, 7, 137.	1.5	40
27	Variations of Hydrodynamics and Submarine Groundwater Discharge in the Yellow River Estuary Under the Influence of the Water-Sediment Regulation Scheme. Estuaries and Coasts, 2016, 39, 333-343.	1.0	16
28	A multiproxy analysis of sedimentary organic carbon in the <scp>Changjiang Estuary</scp> and adjacent shelf. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1407-1429.	1.3	74
29	Rapid screening and identification of multi-class substances of very high concern in textiles using liquid chromatography-hybrid linear ion trap orbitrap mass spectrometry. Journal of Chromatography A, 2015, 1386, 22-30.	1.8	11
30	Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin. Science of the Total Environment, 2015, 517, 22-30.	3.9	26
31	Characterization of Oil by Micro-Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. Analytical Letters, 2015, 48, 2493-2506.	1.0	2
32	Historical reconstruction of organic carbon inputs to the East China Sea inner shelf: Implications for anthropogenic activities and regional climate variability. Holocene, 2015, 25, 1869-1881.	0.9	24
33	Assessment of phytoplankton class abundance using fluorescence excitation-emission matrix by parallel factor analysis and nonnegative least squares. Chinese Journal of Oceanology and Limnology, 2015, 33, 878-889.	0.7	2
34	The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Chemical Geology, 2015, 402, 52-67.	1.4	64
35	Using multi-radiotracer techniques to better understand sedimentary dynamics of reworked muds in the Changjiang River estuary and inner shelf of East China Sea. Marine Geology, 2015, 370, 76-86.	0.9	65
36	Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary. Marine Chemistry, 2015, 168, 124-134.	0.9	40

Peng Yao

#	Article	IF	CITATIONS
37	Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuarine, Coastal and Shelf Science, 2014, 144, 27-38.	0.9	82
38	HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China. Journal of Ocean University of China, 2014, 13, 941-950.	0.6	10
39	Identification of homoglycerol- and dihomoglycerol-containing isoprenoid tetraether lipid cores in aquatic sediments and a soil. Organic Geochemistry, 2014, 76, 146-156.	0.9	11
40	Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation. Continental Shelf Research, 2014, 91, 1-11.	0.9	76
41	Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam. Journal of Marine Systems, 2014, 139, 409-419.	0.9	76
42	Historical eutrophication in the Changjiang and Mississippi delta-front estuaries: Stable sedimentary chloropigments as biomarkers. Continental Shelf Research, 2012, 47, 133-144.	0.9	28
43	Effects of irradiance on pigment signatures of harmful algae during growth process. Acta Oceanologica Sinica, 2011, 30, 46-57.	0.4	17
44	Spatial–temporal distribution of phytoplankton pigments in relation to nutrient status in Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 2010, 89, 234-244.	0.9	24
45	Prasinoxanthin-constaining Prasinophyceae Discovered in Jiaozhou Bay, China. Journal of Integrative Plant Biology, 2007, 49, 497-506.	4.1	8