
MarÃ-a AsunciÃ³n GarcÃ-a-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6657255/publications.pdf

Version: 2024-02-01

MarÃa AsunciÃ³n

#	Article	IF	CITATIONS
1	Familial Colorectal Cancer and Genetic Susceptibility: Colorectal Risk Variants in First-Degree Relatives of Patients With Colorectal Cancer. Clinical and Translational Gastroenterology, 2021, 12, e00301.	2.5	3
2	Predictive Value of Genetic Risk Scores in the Development of Colorectal Adenomas. Digestive Diseases and Sciences, 2021, , 1.	2.3	1
3	Quantitative analysis of p16 methylation in Barrett's carcinogenesis. Annals of Diagnostic Pathology, 2020, 47, 151554.	1.3	1
4	Genetic susceptibility in the development of colorectal adenomas according to family history of colorectal cancer. International Journal of Cancer, 2019, 144, 489-502.	5.1	10
5	Adding genetic scores to risk models in colorectal cancer. Oncotarget, 2019, 10, 4803-4804.	1.8	2
6	Evidence for <i><scp>PTGER</scp>4</i> , <i><scp>PSCA</scp>,</i> and <i><scp>MBOAT</scp>7</i> as risk genes for gastric cancer on the genome and transcriptome level. Cancer Medicine, 2018, 7, 5057-5065.	2.8	22
7	CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells. Frontiers in Pharmacology, 2017, 8, 321.	3.5	8
8	Relevance of DNA repair gene polymorphisms to gastric cancer risk and phenotype. Oncotarget, 2017, 8, 35848-35862.	1.8	14
9	Proton Pump Inhibitors Display Antitumor Effects in Barrett's Adenocarcinoma Cells. Frontiers in Pharmacology, 2016, 7, 452.	3.5	20
10	Acetylsalicylic Acid Exhibits Antitumor Effects in Esophageal Adenocarcinoma Cells In Vitro and In Vivo. Digestive Diseases and Sciences, 2016, 61, 2896-2907.	2.3	7
11	Association of <i>PSCA</i> rs2294008 gene variants with poor prognosis and increased susceptibility to gastric cancer and decreased risk of duodenal ulcer disease. International Journal of Cancer, 2015, 137, 1362-1373.	5.1	39
12	Deconvolution Analysis for Classifying Gastric Adenocarcinoma Patients Based on Differential Scanning Calorimetry Serum Thermograms. Scientific Reports, 2015, 5, 7988.	3.3	30
13	<i>In Vitro</i> Vitamin K ₃ Effect on Conjunctival Fibroblast Migration and Proliferation. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	2
14	Effect of aspirin treatment on the prevention of esophageal adenocarcinoma in a rat experimental model. Oncology Reports, 2014, 31, 2785-2791.	2.6	4
15	Genetic susceptibility and gastric cancer risk: The importance of meta-analyses as a statistical tool. GastroenterologÃa Y HepatologÃa, 2014, 37, 421-426.	0.5	10
16	Molecular Pathogenesis of Gastric Cancer. Helicobacter, 2013, 18, 28-33.	3.5	57
17	Mo1122 Relevance of Psca Rs2294008 Gene Polymorphism on Gastric Cancer Risk and Prognosis. Gastroenterology, 2013, 144, S-583-S-584.	1.3	1
18	Characterization of the Prostaglandin E2 Pathway in a Rat Model of Esophageal Adenocarcinoma. Current Cancer Drug Targets, 2012, 12, 132-143.	1.6	6

MarÃa AsunciÃ³N

#	Article	IF	CITATIONS
19	Su1854 Association of TP53 Arg72pro Variants With Gastric Cancer Risk in Helicobacter pylori Infected Subjects: A Nation-Wide Case-Control Study in Spain. Gastroenterology, 2012, 142, S-519.	1.3	1
20	Relevance of GSTM1, GSTT1, and GSTP1 gene polymorphisms to gastric cancer susceptibility and phenotype. Mutagenesis, 2012, 27, 771-777.	2.6	53
21	Prognostic Role of Host Cyclooxygenase and Cytokine Genotypes in a Caucasian Cohort of Patients with Gastric Adenocarcinoma. PLoS ONE, 2012, 7, e46179.	2.5	9
22	Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats. World Journal of Gastroenterology, 2012, 18, 4866.	3.3	8
23	Relevance of DNA Repair Gene Polymorphisms on Gastric Cancer Susceptibility and Phenotype. Gastroenterology, 2011, 140, S-354.	1.3	1
24	Association of IL10 promoter polymorphisms with idiopathic achalasia. Human Immunology, 2011, 72, 749-752.	2.4	26
25	Prostaglandin EP2 receptor expression is increased in Barrett's oesophagus and oesophageal adenocarcinoma. Alimentary Pharmacology and Therapeutics, 2010, 31, 440-451.	3.7	32
26	Relevance of IL-1 and TNF gene polymorphisms on interleukin-1β and tumor necrosis factor-α gastric mucosal production. Human Immunology, 2009, 70, 935-945.	2.4	24
27	Pathogenic mechanisms of postinfectious functional gastrointestinal disorders: Results 3 years after gastroenteritis. Scandinavian Journal of Gastroenterology, 2009, 44, 1173-1185.	1.5	46
28	A case-control study of the association between polymorphisms of the endothelial nitric oxide synthase and glycoprotein IIIa genes and upper gastrointestinal bleeding in users of low-dose aspirin. Clinical Therapeutics, 2008, 30, 121-130.	2.5	19
29	Prevention of Cancer in the Upper Gastrointestinal Tract with COX-Inhibition. Still an Option?. Current Pharmaceutical Design, 2007, 13, 2261-2273.	1.9	28
30	Gastric Cancer Susceptibility Is Not Linked to Pro-and Anti-Inflammatory Cytokine Gene Polymorphisms in Whites: A Nationwide Multicenter Study in Spain. American Journal of Gastroenterology, 2007, 102, 1878-1892.	0.4	117
31	CagA-positive Helicobacter pylori infection is not associated with decreased risk of Barrett's esophagus in a population with high H. pylori infection rate. BMC Gastroenterology, 2006, 6, 7.	2.0	24
32	TGFB1 gene polymorphisms: their relevance in the susceptibility to Helicobacter pylori-related diseases. Genes and Immunity, 2006, 7, 640-646.	4.1	20
33	Effects of selective PGE2 receptor antagonists in esophageal adenocarcinoma cells derived from Barrett's esophagus. Prostaglandins and Other Lipid Mediators, 2006, 81, 150-161.	1.9	26
34	Association Between Achalasia and Nitric Oxide Synthase Gene Polymorphisms. American Journal of Gastroenterology, 2006, 101, 1979-1984.	0.4	34
35	No allelic variant associations of the IL-1 and TNF gene polymorphisms in the susceptibility to duodenal ulcer disease. International Journal of Immunogenetics, 2005, 32, 299-306.	1.8	23
36	Susceptibility to ankylosing spondylitis: no evidence for the involvement of transforming growth factor Â1 (TGFB1) gene polymorphisms. Annals of the Rheumatic Diseases, 2005, 64, 616-619.	0.9	18

MarÃa AsunciÃ³N

#	Article	IF	CITATIONS
37	Lack of association of IL-12 p40 gene polymorphism with peptic ulcer disease. Human Immunology, 2005, 66, 72-76.	2.4	14
38	Gender-Related Association Between the TGFBI+869 Polymorphism and Multiple Sclerosis. Journal of Interferon and Cytokine Research, 2004, 24, 536-542.	1.2	4
39	Association of interleukin 1 gene family polymorphisms with duodenal ulcer disease. Clinical and Experimental Immunology, 2003, 134, 525-531.	2.6	48
40	Oxidative stress-related gene polymorphisms and susceptibility to Barrett's esophagus. Gastroenterology, 2003, 124, A633.	1.3	0
41	Lack of association of IL-1B and TGFB1 gene polymorphisms with Barrett's esophagus. Gastroenterology, 2003, 124, A640-A641.	1.3	0
42	Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. British Journal of Rheumatology, 2002, 41, 1419-1423.	2.3	84
43	Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clinical and Experimental Immunology, 2001, 115, 294-300.	2.6	112
44	Association of interleukin-1 gene family polymorphisms with duodenal ulcer disease. Gastroenterology, 2001, 120, A67-A68.	1.3	0
45	Polymorphisms of the Interleukin-1 Gene Family, Oral Microbial Pathogens, and Smoking in Adult Periodontitis. Journal of Dental Research, 2001, 80, 1695-1699.	5.2	105
46	The polymorphic IL-1B and IL-1RN genes in the aetiopathogenesis of peptic ulcer. Clinical and Experimental Immunology, 2001, 125, 368-375.	2.6	67
47	TNF and LTA gene polymorphisms reveal different risk in gastric and duodenal ulcer patients. Genes and Immunity, 2001, 2, 415-421.	4.1	61
48	Allelic variation at the interleukin 1beta gene is associated with decreased bone mass in patients with inflammatory bowel diseases. Gut, 2001, 49, 644-649.	12.1	60
49	TGFB1 gene polymorphisms and inflammatory bowel disease. Immunogenetics, 2000, 51, 869-872.	2.4	20
50	Platelet-Derived Growth Factor and Epidermal Growth Factor Play a Major Role in Human Colonic Fibroblast Repair Activities. European Surgical Research, 2000, 32, 191-196.	1.3	17
51	Allelic variants of the thiopurine s-methyltranferase deficiency in patients with ulcerative colitis and in healthy controls. American Journal of Gastroenterology, 2000, 95, 2313-2317.	0.4	39
52	A New Model for the Induction of Tumours in the Forestomach of Rats by N-Methyl-N-Nitrosourea. European Surgical Research, 2000, 32, 315-321.	1.3	2
53	Association of interleukin-1 î² and interleukin-1 receptor antagonist genes with disease severity in MS. Neurology, 1999, 52, 595-595.	1.1	125
54	IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics, 1999, 49, 527-531.	2.4	132

MarÃa AsunciÃ³N

#	Article	IF	CITATIONS
55	Significant Differences in the Interleukin-1ß and Interleukin-1 Receptor Antagonist Gene Polymorphisms in a Hungarian Population with Inflammatory Bowel Disease. Scandinavian Journal of Gastroenterology, 1999, 34, 175-179.	1.5	51
56	In vitro wound repair by human gastric fibroblasts: implications for ulcer healing. Digestive Diseases and Sciences, 1998, 43, 1230-1240.	2.3	11
57	HLA-DRB1 * 03 , but not the TNFA -308 promoter gene polymorphism, confers protection against fistulising Crohn's disease. Immunogenetics, 1998, 47, 451-455.	2.4	65
58	Collagen Secretion by Human Gastric and Skin Fibroblasts: Implications for Ulcer Healing. European Surgical Research, 1998, 30, 48-54.	1.3	7
59	TNF-α promoter polymorphisms, production and susceptibility to multiple sclerosis in different groups of patients. Journal of Neuroimmunology, 1997, 72, 149-153.	2.3	214
60	Interleukin-1 receptor antagonist gene polymorphism and multiple sclerosis. Lancet, The, 1995, 346, 979-980.	13.7	69