Prosenjit Bose

List of Publications by Citations

Source: https://exaly.com/author-pdf/6657148/prosenjit-bose-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

256 papers

3,193 citations

25 h-index

49 g-index

269 ext. papers

3,603 ext. citations

o.8 avg, IF

5.09 L-index

#	Paper	IF	Citations
256	Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. Wireless Networks, 2001 , 7, 609-616	2.5	618
255	Routing with guaranteed delivery in ad hoc wireless networks 1999,		415
254	On the false-positive rate of Bloom filters. <i>Information Processing Letters</i> , 2008 , 108, 210-213	0.8	84
253	Online Routing in Triangulations. SIAM Journal on Computing, 2004, 33, 937-951	1.1	73
252	On embedding an outer-planar graph in a point set. <i>Computational Geometry: Theory and Applications</i> , 2002 , 23, 303-312	0.4	67
251	Flips in planar graphs. Computational Geometry: Theory and Applications, 2009, 42, 60-80	0.4	52
250	Efficient visibility queries in simple polygons. <i>Computational Geometry: Theory and Applications</i> , 2002 , 23, 313-335	0.4	50
249	Online Routing in Triangulations. Lecture Notes in Computer Science, 1999, 113-122	0.9	49
248	Fast approximations for sums of distances, clustering and the FermatWeber problem. <i>Computational Geometry: Theory and Applications</i> , 2003 , 24, 135-146	0.4	46
247	Constructing Plane Spanners of Bounded Degree and Low Weight. <i>Algorithmica</i> , 2005 , 42, 249-264	0.9	46
246	Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing. <i>Lecture Notes in Computer Science</i> , 2009 , 98-109	0.9	41
245	On the Spanning Ratio of Gabriel Graphs and beta-Skeletons. <i>SIAM Journal on Discrete Mathematics</i> , 2006 , 20, 412-427	0.7	39
244	A survey of geodesic paths on 3D surfaces. <i>Computational Geometry: Theory and Applications</i> , 2011 , 44, 486-498	0.4	38
243	Guarding polyhedral terrains. Computational Geometry: Theory and Applications, 1997, 7, 173-185	0.4	37
242	On plane geometric spanners: A survey and open problems. <i>Computational Geometry: Theory and Applications</i> , 2013 , 46, 818-830	0.4	35
241	Separating an object from its cast. <i>CAD Computer Aided Design</i> , 2002 , 34, 547-559	2.9	35
240	Efficient Algorithms for Petersen's Matching Theorem. <i>Journal of Algorithms</i> , 2001 , 38, 110-134		35

239	Competitive online routing in geometric graphs. <i>Theoretical Computer Science</i> , 2004 , 324, 273-288	1.1	33
238	Temporal Synchronization of Video Sequences in Theory and in Practice 2005,		31
237	On simplifying dot maps. Computational Geometry: Theory and Applications, 2004, 27, 43-62	0.4	31
236	Ordered theta graphs. Computational Geometry: Theory and Applications, 2004, 28, 11-18	0.4	29
235	Approximating geometric bottleneck shortest paths. <i>Computational Geometry: Theory and Applications</i> , 2004 , 29, 233-249	0.4	29
234	ONLINE ROUTING IN CONVEX SUBDIVISIONS. <i>International Journal of Computational Geometry and Applications</i> , 2002 , 12, 283-295	0.3	27
233	Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces. <i>Computational Geometry: Theory and Applications</i> , 2003 , 26, 209-219	0.4	25
232	On the Spanning Ratio of Gabriel Graphs and Eskeletons. Lecture Notes in Computer Science, 2002 , 479-4	193 9	25
231	Feature Based Cut Detection with Automatic Threshold Selection. <i>Lecture Notes in Computer Science</i> , 2004 , 410-418	0.9	24
230	Surface roughness of rock faces through the curvature of triangulated meshes. <i>Computers and Geosciences</i> , 2014 , 70, 229-237	4.5	23
229	ON STRUCTURAL AND GRAPH THEORETIC PROPERTIES OF HIGHER ORDER DELAUNAY GRAPHS. International Journal of Computational Geometry and Applications, 2009 , 19, 595-615	0.3	23
228	Space-efficient geometric divide-and-conquer algorithms. <i>Computational Geometry: Theory and Applications</i> , 2007 , 37, 209-227	0.4	23
227	Area-preserving approximations of polygonal paths. <i>Journal of Discrete Algorithms</i> , 2006 , 4, 554-566		22
226	The Floodlight Problem. <i>International Journal of Computational Geometry and Applications</i> , 1997 , 07, 153-163	0.3	21
225	Almost all Delaunay triangulations have stretch factor greater than . <i>Computational Geometry:</i> Theory and Applications, 2011 , 44, 121-127	0.4	20
224	☑-ANGLE YAO GRAPHS ARE SPANNERS. <i>International Journal of Computational Geometry and Applications</i> , 2012 , 22, 61-82	0.3	20
223	AN IMPROVED ALGORITHM FOR SUBDIVISION TRAVERSAL WITHOUT EXTRA STORAGE. International Journal of Computational Geometry and Applications, 2002 , 12, 297-308	0.3	19
222	DELAUNAY AND DIAMOND TRIANGULATIONS CONTAIN SPANNERS OF BOUNDED DEGREE. International Journal of Computational Geometry and Applications, 2009 , 19, 119-140	0.3	18

221	Persistent realtime building interior generation 2006,		18
220	Every Set of Disjoint Line Segments Admits a Binary Tree. <i>Discrete and Computational Geometry</i> , 2001 , 26, 387-410	0.6	18
219	Strategies for Hotlink Assignments. Lecture Notes in Computer Science, 2000, 23-34	0.9	17
218	Optimal Local Routing on Delaunay Triangulations Defined by Empty Equilateral Triangles. <i>SIAM Journal on Computing</i> , 2015 , 44, 1626-1649	1.1	16
217	Algorithms for optimal outlier removal. <i>Journal of Discrete Algorithms</i> , 2009 , 7, 239-248		16
216	Approximate Range Mode and Range Median Queries. Lecture Notes in Computer Science, 2005, 377-38	80.9	16
215	Constructing Plane Spanners of Bounded Degree and Low Weight. <i>Lecture Notes in Computer Science</i> , 2002 , 234-246	0.9	16
214	Filling holes in triangular meshes by curve unfolding 2009 ,		15
213	On bounded degree plane strong geometric spanners. Journal of Discrete Algorithms, 2012, 15, 16-31		14
212	PROXIMITY GRAPHS: E, IIIIAND [International Journal of Computational Geometry and Applications, 2012 , 22, 439-469	0.3	14
211	Computing the Greedy Spanner in Near-Quadratic Time. <i>Algorithmica</i> , 2010 , 58, 711-729	0.9	14
2 10	Online Routing in Convex Subdivisions. <i>Lecture Notes in Computer Science</i> , 2000 , 47-59	0.9	14
209	Visual enhancement of 3D images of rock faces for fracture mapping. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2014 , 72, 325-335	6	13
208	Characterizing and efficiently computing quadrangulations of planar point sets. <i>Computer Aided Geometric Design</i> , 1997 , 14, 763-785	1.2	13
207	Switching to Directional Antennas with Constant Increase in Radius and Hop Distance. <i>Lecture Notes in Computer Science</i> , 2011 , 134-146	0.9	13
206	Revisiting the Problem of Searching on a Line. Lecture Notes in Computer Science, 2013, 205-216	0.9	13
205	The B-graph is a spanner. Computational Geometry: Theory and Applications, 2015, 48, 108-119	0.4	12
204	A Polynomial Bound for Untangling Geometric Planar Graphs. <i>Discrete and Computational Geometry</i> , 2009 , 42, 570-585	0.6	12

(1998-2009)

203	Traversing a Set of Points with a Minimum Number of Turns. <i>Discrete and Computational Geometry</i> , 2009 , 41, 513-532	0.6	12
202	Simultaneous diagonal flips in plane triangulations. <i>Journal of Graph Theory</i> , 2007 , 54, 307-330	0.8	12
201	On the stabbing number of a random Delaunay triangulation. <i>Computational Geometry: Theory and Applications</i> , 2007 , 36, 89-105	0.4	12
2 00	Searching on a line: A complete characterization of the optimal solution. <i>Theoretical Computer Science</i> , 2015 , 569, 24-42	1.1	11
199	Competitive Routing in the Half-B-Graph 2012 ,		11
198	Computing constrained minimum-width annuli of point sets. CAD Computer Aided Design, 1998, 30, 267-	-275	11
197	Equitable subdivisions within polygonal regions. <i>Computational Geometry: Theory and Applications</i> , 2006 , 34, 20-27	0.4	11
196	Geodesic ham-sandwich cuts 2004 ,		11
195	PROPERTIES OF ARRANGEMENT GRAPHS. <i>International Journal of Computational Geometry and Applications</i> , 2003 , 13, 447-462	0.3	11
194	DIAMONDS ARE NOT A MINIMUM WEIGHT TRIANGULATION'S BEST FRIEND. <i>International Journal of Computational Geometry and Applications</i> , 2002 , 12, 445-453	0.3	11
193	POSTURE INVARIANT CORRESPONDENCE OF INCOMPLETE TRIANGULAR MANIFOLDS. International Journal of Shape Modeling, 2007 , 13, 139-157		11
192	A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon. <i>Discrete and Computational Geometry</i> , 2016 , 56, 836-859	0.6	10
191	Towards tight bounds on theta-graphs: More is not always better. <i>Theoretical Computer Science</i> , 2016 , 616, 70-93	1.1	10
190	On Plane Constrained Bounded-Degree Spanners. <i>Algorithmica</i> , 2019 , 81, 1392-1415	0.9	10
189	Some properties of k-Delaunay and k-Gabriel graphs. <i>Computational Geometry: Theory and Applications</i> , 2013 , 46, 131-139	0.4	10
188	Augmented reality on cloth with realistic illumination. <i>Machine Vision and Applications</i> , 2009 , 20, 85-92	2.8	10
187	Automatically Creating Design Models From 3D Anthropometry Data. <i>Journal of Computing and Information Science in Engineering</i> , 2012 , 12,	2.4	10
186	Intersections with random geometric objects. <i>Computational Geometry: Theory and Applications</i> , 1998 , 10, 139-154	0.4	10

185	Geometric and computational aspects of gravity casting. CAD Computer Aided Design, 1995, 27, 455-464	1 2.9	10
184	Proximity constraints and representable trees (extended abstract). <i>Lecture Notes in Computer Science</i> , 1995 , 340-351	0.9	10
183	Theta-3 is connected. Computational Geometry: Theory and Applications, 2014, 47, 910-917	0.4	9
182	Geodesic Ham-Sandwich Cuts. <i>Discrete and Computational Geometry</i> , 2007 , 37, 325-339	0.6	9
181	On embedding an outer-planar graph in a point set. Lecture Notes in Computer Science, 1997, 25-36	0.9	9
180	Flipping edge-labelled triangulations. Computational Geometry: Theory and Applications, 2018, 68, 309-3	3264	8
179	Coverage with k-transmitters in the presence of obstacles. <i>Journal of Combinatorial Optimization</i> , 2013 , 25, 208-233	0.9	8
178	Bounding the locality of distributed routing algorithms. <i>Distributed Computing</i> , 2013 , 26, 39-58	1.2	8
177	New and Improved Spanning Ratios for Yao Graphs 2014 ,		8
176	On the Stretch Factor of the Theta-4 Graph. Lecture Notes in Computer Science, 2013, 109-120	0.9	8
175	Every Large Point Set contains Many Collinear Points or an Empty Pentagon. <i>Graphs and Combinatorics</i> , 2011 , 27, 47-60	0.5	8
174	On Plane Constrained Bounded-Degree Spanners. Lecture Notes in Computer Science, 2012, 85-96	0.9	8
173	Drawing Nice Projections of Objects in Space. <i>Journal of Visual Communication and Image Representation</i> , 1999 , 10, 155-172	2.7	8
172	Geometric and computational aspects of manufacturing processes. <i>Computers and Graphics</i> , 1994 , 18, 487-497	1.8	8
171	Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. <i>Lecture Notes in Computer Science</i> , 2006 , 80-92	0.9	8
170	ON COMPUTING ENCLOSING ISOSCELES TRIANGLES AND RELATED PROBLEMS. <i>International Journal of Computational Geometry and Applications</i> , 2011 , 21, 25-45	0.3	7
169	On rectangle visibility graphs. Lecture Notes in Computer Science, 1997, 25-44	0.9	7
168	Filling polyhedral molds. <i>CAD Computer Aided Design</i> , 1998 , 30, 245-254	2.9	7

167	A Characterization of the degree sequences of 2-trees. Journal of Graph Theory, 2008, 58, 191-209	0.8	7
166	Some Aperture-Angle Optimization Problems. <i>Algorithmica</i> , 2002 , 33, 411-435	0.9	7
165	Asymmetric Communication Protocols via Hotlink Assignments. <i>Theory of Computing Systems</i> , 2003 , 36, 655-661	0.6	7
164	GENERALIZING MONOTONICITY: ON RECOGNIZING SPECIAL CLASSES OF POLYGONS AND POLYHEDRA. <i>International Journal of Computational Geometry and Applications</i> , 2005 , 15, 591-608	0.3	7
163	Common Unfoldings of Polyominoes and Polycubes. Lecture Notes in Computer Science, 2011, 44-54	0.9	7
162	Computing constrained minimum-width annuli of point sets. <i>Lecture Notes in Computer Science</i> , 1997 , 392-401	0.9	7
161	Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition. <i>Lecture Notes in Computer Science</i> , 2016 , 519-531	0.9	7
160	Facility Location Constrained to a Polygonal Domain. Lecture Notes in Computer Science, 2002, 153-164	0.9	7
159	Filling polyhedral molds. Lecture Notes in Computer Science, 1993, 210-221	0.9	7
158	Stable Roommates Spanner. Computational Geometry: Theory and Applications, 2013, 46, 120-130	0.4	6
157	Switching to Directional Antennas with Constant Increase in Radius and Hop Distance. <i>Algorithmica</i> , 2014 , 69, 397-409	0.9	6
156	A linear-space algorithm for distance preserving graph embedding. <i>Computational Geometry:</i> Theory and Applications, 2009 , 42, 289-304	0.4	6
155	Translating a regular grid over a point set. <i>Computational Geometry: Theory and Applications</i> , 2003 , 25, 21-34	0.4	6
154	Spanners of Additively Weighted Point Sets. <i>Lecture Notes in Computer Science</i> , 2008 , 367-377	0.9	6
153	⚠ -Angle Yao Graphs Are Spanners. <i>Lecture Notes in Computer Science</i> , 2010 , 446-457	0.9	6
152	Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs. <i>Lecture Notes in Computer Science</i> , 2014 , 108-119	0.9	5
151	Posture invariant correspondence of triangular meshes in shape space 2009 ,		5
150	Coarse grained parallel algorithms for graph matching. <i>Parallel Computing</i> , 2008 , 34, 47-62	1	5

149	Partitions of complete geometric graphs into plane trees. <i>Computational Geometry: Theory and Applications</i> , 2006 , 34, 116-125	0.4	5
148	All convex polyhedra can be clamped with parallel jaw grippers. <i>Computational Geometry: Theory and Applications</i> , 1996 , 6, 291-302	0.4	5
147	Optimal algorithms to embed trees in a point set. Lecture Notes in Computer Science, 1996, 64-75	0.9	5
146	Efficient Construction of Near-Optimal Binary and Multiway Search Trees. <i>Lecture Notes in Computer Science</i> , 2009 , 230-241	0.9	5
145	On the Spanning Ratio of Theta-Graphs. Lecture Notes in Computer Science, 2013, 182-194	0.9	5
144	An O(log log n)-Competitive Binary Search Tree with Optimal Worst-Case Access Times. <i>Lecture Notes in Computer Science</i> , 2010 , 38-49	0.9	5
143	The Grid Placement Problem. Lecture Notes in Computer Science, 2001, 180-191	0.9	5
142	Fast local searches and updates in bounded universes. <i>Computational Geometry: Theory and Applications</i> , 2013 , 46, 181-189	0.4	4
141	Minimum-area enclosing triangle with a fixed angle. <i>Computational Geometry: Theory and Applications</i> , 2014 , 47, 90-109	0.4	4
140	A generalized Winternitz Theorem. <i>Journal of Geometry</i> , 2011 , 100, 29-35	0.4	4
139	Global Context Descriptors for SURF and MSER Feature Descriptors 2010,		4
138	Bounding the locality of distributed routing algorithms 2009,		4
137	Geometric spanners with small chromatic number. <i>Computational Geometry: Theory and Applications</i> , 2009 , 42, 134-146	0.4	4
136	Sigma-local graphs. <i>Journal of Discrete Algorithms</i> , 2010 , 8, 15-23		4
135	Lazy Generation of Building Interiors in Realtime 2006,		4
134	Light edges in degree-constrained graphs. <i>Discrete Mathematics</i> , 2004 , 282, 35-41	0.7	4
133	Experimental results on quadrangulations of sets of fixed points. <i>Computer Aided Geometric Design</i> , 2002 , 19, 533-552	1.2	4

131	Coarse grained parallel maximum matching in convex bipartite graphs		4
130	Spanning Properties of Yao and ?-Graphs in the Presence of Constraints. <i>International Journal of Computational Geometry and Applications</i> , 2019 , 29, 95-120	0.3	4
129	Simultaneous diagonal flips in plane triangulations 2006 ,		4
128	Diamond Triangulations Contain Spanners of Bounded Degree. <i>Lecture Notes in Computer Science</i> , 2006 , 173-182	0.9	4
127	On the Stretch Factor of Convex Delaunay Graphs. Lecture Notes in Computer Science, 2008, 656-667	0.9	4
126	Improved Methods For Generating Quasi-gray Codes. Lecture Notes in Computer Science, 2010, 224-235	0.9	4
125	A History of Flips in Combinatorial Triangulations. Lecture Notes in Computer Science, 2012, 29-44	0.9	4
124	A General Framework for Searching on a Line. Lecture Notes in Computer Science, 2016, 143-153	0.9	4
123	Incremental Construction of k-Dominating Sets in Wireless Sensor Networks. <i>Lecture Notes in Computer Science</i> , 2006 , 202-214	0.9	4
122	Station Layouts in the Presence of Location Constraints. <i>Lecture Notes in Computer Science</i> , 1999 , 269-2	7& 9	4
121	Upper and Lower Bounds for Online Routing on Delaunay Triangulations. <i>Discrete and Computational Geometry</i> , 2017 , 58, 482-504	0.6	3
120	Plane Bichromatic Trees of Low Degree. <i>Discrete and Computational Geometry</i> , 2018 , 59, 864-885	0.6	3
119	Making triangulations 4-connected using flips. <i>Computational Geometry: Theory and Applications</i> , 2014 , 47, 187-197	0.4	3
118	Layered Working-Set Trees. <i>Algorithmica</i> , 2012 , 63, 476-489	0.9	3
117	A general framework for searching on a line. <i>Theoretical Computer Science</i> , 2017 , 703, 1-17	1.1	3
116	Flips in edge-labelled pseudo-triangulations. <i>Computational Geometry: Theory and Applications</i> , 2017 , 60, 45-54	0.4	3
115	Succinct geometric indexes supporting point location queries. <i>ACM Transactions on Algorithms</i> , 2012 , 8, 1-26	1.2	3
114	Testing the Quality of Manufactured Disks and Balls. <i>Algorithmica</i> , 2004 , 38, 161-177	0.9	3

113	Packing two disks into a polygonal environment. <i>Journal of Discrete Algorithms</i> , 2004 , 2, 373-380		3
112	Optimizing a constrained convex polygonal annulus. <i>Journal of Discrete Algorithms</i> , 2005 , 3, 1-26		3
111	Competitive Online Routing on Delaunay Triangulations. Lecture Notes in Computer Science, 2014, 98-10	D .9	3
110	Computing the Greedy Spanner in Near-Quadratic Time. Lecture Notes in Computer Science, 2008, 390-40	0 1.9	3
109	On Generalized Diamond Spanners. Lecture Notes in Computer Science, 2007, 325-336	0.9	3
108	Optimal Algorithms for Constrained 1-Center Problems. <i>Lecture Notes in Computer Science</i> , 2014 , 84-95	0.9	3
107	Testing the Quality of Manufactured Disks and Cylinders. Lecture Notes in Computer Science, 1998, 130-7	13&)	3
106	Plane geodesic spanning trees, Hamiltonian cycles, and perfect matchings in a simple polygon. <i>Computational Geometry: Theory and Applications</i> , 2016 , 57, 27-39	0.4	3
105	The Power and Limitations of Static Binary Search Trees with Lazy Finger. <i>Algorithmica</i> , 2016 , 76, 1264-1	275	3
104	Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. <i>Algorithmica</i> , 2018 , 80, 3316-3334	0.9	2
103	Spanning Trees in Multipartite Geometric Graphs. <i>Algorithmica</i> , 2018 , 80, 3177-3191	0.9	2
102	Improved Spanning Ratio for Low Degree Plane Spanners. <i>Algorithmica</i> , 2018 , 80, 935-976	0.9	2
101	Constrained generalized Delaunay graphs are plane spanners. <i>Computational Geometry: Theory and Applications</i> , 2018 , 74, 50-65	0.4	2
100	Skip lift: A probabilistic alternative to redBlack trees. <i>Journal of Discrete Algorithms</i> , 2012 , 14, 13-20		2
99	New Bounds for Facial Nonrepetitive Colouring. <i>Graphs and Combinatorics</i> , 2017 , 33, 817-832	0.5	2
98	A General Framework to Generate Sizing Systems from 3D Motion Data Applied to Face Mask Design 2014 ,		2
97	A note on the perimeter of fat objects. Computational Geometry: Theory and Applications, 2011, 44, 1-8	0.4	2
96	FILLING HOLES IN TRIANGULAR MESHES USING DIGITAL IMAGES BY CURVE UNFOLDING. International Journal of Shape Modeling, 2010 , 16, 151-171		2

95	MORPHING OF TRIANGULAR MESHES IN SHAPE SPACE. <i>International Journal of Shape Modeling</i> , 2010 , 16, 195-212		2
94	Connectivity-preserving transformations of binary images. <i>Computer Vision and Image Understanding</i> , 2009 , 113, 1027-1038	4.3	2
93	Spanners of additively weighted point sets. <i>Journal of Discrete Algorithms</i> , 2011 , 9, 287-298		2
92	Reconfiguring Triangulations with Edge Flips and Point Moves. <i>Algorithmica</i> , 2007 , 47, 367-378	0.9	2
91	Algorithms for Designing Clamshell Molds. Computer-Aided Design and Applications, 2007, 4, 1-10	1.4	2
90	On the Stretch Factor of the Constrained Delaunay Triangulation 2006,		2
89	Algorithms for Packing Two Circles in a Convex Polygon. Lecture Notes in Computer Science, 2000, 93-10)3 o.9	2
88	On a Family of Strong Geometric Spanners That Admit Local Routing Strategies. <i>Lecture Notes in Computer Science</i> , 2007 , 300-311	0.9	2
87	Optimal Data Structures for Farthest-Point Queries in Cactus Networks. <i>Journal of Graph Algorithms and Applications</i> , 2015 , 19, 11-41	1.5	2
86	Time-Space Trade-Off for Finding the k-Visibility Region of a Point in a Polygon. <i>Lecture Notes in Computer Science</i> , 2017 , 308-319	0.9	2
85	A Distribution-Sensitive Dictionary with Low Space Overhead. <i>Lecture Notes in Computer Science</i> , 2009 , 110-118	0.9	2
84	Communication-Efficient Construction of the Plane Localized Delaunay Graph. <i>Lecture Notes in Computer Science</i> , 2010 , 282-293	0.9	2
83	A History of Distribution-Sensitive Data Structures. Lecture Notes in Computer Science, 2013, 133-149	0.9	2
82	The B-Graph is a Spanner. Lecture Notes in Computer Science, 2013, 100-114	0.9	2
81	Upper and Lower Bounds for Online Routing on Delaunay Triangulations. <i>Lecture Notes in Computer Science</i> , 2015 , 203-214	0.9	2
80	Testing the Quality of Manufactured Balls. Lecture Notes in Computer Science, 1999, 145-156	0.9	2
79	Plane Bichromatic Trees of Low Degree. Lecture Notes in Computer Science, 2016, 68-80	0.9	2
78	Coverage with k-Transmitters in the Presence of Obstacles. <i>Lecture Notes in Computer Science</i> , 2010 , 1-15	0.9	2

77	Should Static Search Trees Ever Be Unbalanced?. Lecture Notes in Computer Science, 2010, 109-120	0.9	2
76	Layered Working-Set Trees. <i>Lecture Notes in Computer Science</i> , 2010 , 686-696	0.9	2
75	De-amortizing Binary Search Trees. Lecture Notes in Computer Science, 2012, 121-132	0.9	2
74	The Power and Limitations of Static Binary Search Trees with Lazy Finger. <i>Lecture Notes in Computer Science</i> , 2014 , 181-192	0.9	2
73	Maximum Plane Trees in Multipartite Geometric Graphs. <i>Algorithmica</i> , 2019 , 81, 1512-1534	0.9	2
72	Weighted Ham-Sandwich Cuts. <i>Lecture Notes in Computer Science</i> , 2005 , 48-53	0.9	2
71	Improved Bounds for Guarding Plane Graphs with Edges. <i>Graphs and Combinatorics</i> , 2019 , 35, 437-450	0.5	1
70	Competitive Online Search Trees on Trees 2020 , 1878-1891		1
69	Optimal Art Gallery Localization is NP-hard. <i>Computational Geometry: Theory and Applications</i> , 2020 , 88, 101607	0.4	1
68	On the separation of a polyhedron from its single-part mold 2017 ,		1
67	Continuous Yao graphs. Computational Geometry: Theory and Applications, 2018, 67, 42-52	0.4	1
66	The Price of Order. International Journal of Computational Geometry and Applications, 2016 , 26, 135-149	0.3	1
65	Isoperimetric triangular enclosures with a fixed angle. <i>Journal of Geometry</i> , 2013 , 104, 229-255	0.4	1
64	Constrained Routing Between Non-Visible Vertices. Lecture Notes in Computer Science, 2017, 62-74	0.9	1
63	Local Routing in Spanners Based on WSPDs. Lecture Notes in Computer Science, 2017, 205-216	0.9	1
62	Competitive Online Routing on Delaunay Triangulations. <i>International Journal of Computational Geometry and Applications</i> , 2017 , 27, 241-253	0.3	1
61	Robust geometric spanners 2013 ,		1
60	Robust Geometric Spanners. <i>SIAM Journal on Computing</i> , 2013 , 42, 1720-1736	1.1	1

(2021-2009)

59	A note on the lower bound of edge guards of polyhedral terrains. <i>International Journal of Computer Mathematics</i> , 2009 , 86, 577-583	1.2	1
58	COMPUTING SIGNED PERMUTATIONS OF POLYGONS. <i>International Journal of Computational Geometry and Applications</i> , 2011 , 21, 87-100	0.3	1
57	On local transformations in plane geometric graphs embedded on small grids. <i>Computational Geometry: Theory and Applications</i> , 2008 , 39, 65-77	0.4	1
56	A GENERAL APPROXIMATION ALGORITHM FOR PLANAR MAPS WITH APPLICATIONS. <i>International Journal of Computational Geometry and Applications</i> , 2007 , 17, 529-554	0.3	1
55	Location Oblivious Distributed Unit Disk Graph Coloring 2007 , 222-233		1
54	STATION LAYOUTS IN THE PRESENCE OF LOCATION CONSTRAINTS. <i>Journal of Interconnection Networks</i> , 2002 , 03, 1-17	0.4	1
53	Spanners of Complete k-Partite Geometric Graphs 2008 , 170-181		1
52	On the Restricted 1-Steiner Tree Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 448-459	0.9	1
51	Constrained Generalized Delaunay Graphs are Plane Spanners. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 281-293	0.4	1
50	Reconfiguring Triangulations with Edge Flips and Point Moves. <i>Lecture Notes in Computer Science</i> , 2005 , 1-11	0.9	1
49	Local Routing in Convex Subdivisions. Lecture Notes in Computer Science, 2015, 140-151	0.9	1
48	Competitive Local Routing with Constraints. <i>Lecture Notes in Computer Science</i> , 2015 , 23-34	0.9	1
47	Hamiltonicity for convex shape Delaunay and Gabriel graphs. <i>Computational Geometry: Theory and Applications</i> , 2020 , 89, 101629	0.4	1
46	Maximum Plane Trees in Multipartite Geometric Graphs. Lecture Notes in Computer Science, 2017 , 193-	 2 0 49	1
45	Constrained routing between non-visible vertices. <i>Theoretical Computer Science</i> , 2021 , 861, 144-154	1.1	1
44	Biased Predecessor Search. <i>Algorithmica</i> , 2016 , 76, 1097-1105	0.9	1
43	Probing convex polygons with a wedge. Computational Geometry: Theory and Applications, 2016, 58, 34	- 59 .4	1
42	Improved Bounds on the Spanning Ratio of the Theta-5-Graph. <i>Lecture Notes in Computer Science</i> , 2021 , 215-228	0.9	1

41	Packing Two Disks into a Polygonal Environment. Lecture Notes in Computer Science, 2001, 142-149	0.9	1
40	A new "angle" on aortic neck angulation measurement. <i>Journal of Vascular Surgery</i> , 2019 , 70, 756-761.e	13.5	О
39	Power domination on triangular grids with triangular and hexagonal shape. <i>Journal of Combinatorial Optimization</i> , 2020 , 40, 482-500	0.9	0
38	Bounded-Angle Minimum Spanning Trees. <i>Algorithmica</i> ,1	0.9	O
37	Affine invariant triangulations. Computer Aided Geometric Design, 2021, 91, 102039	1.2	0
36	Piercing pairwise intersecting geodesic disks. <i>Computational Geometry: Theory and Applications</i> , 2021 , 98, 101774	0.4	O
35	Triangulating and guarding realistic polygons. <i>Computational Geometry: Theory and Applications</i> , 2014 , 47, 296-306	0.4	
34	A distribution-sensitive dictionary with low space overhead. <i>Journal of Discrete Algorithms</i> , 2012 , 10, 140-145		
33	Reprint of: Theta-3 is connected. Computational Geometry: Theory and Applications, 2015, 48, 407-414	0.4	
32	Location-Oblivious Distributed Unit Disk Graph Coloring. <i>Algorithmica</i> , 2011 , 60, 236-249	0.9	
31	Clamshell Casting. Algorithmica, 2009, 55, 666-702	0.9	
3 0	Rotationally monotone polygons. <i>Computational Geometry: Theory and Applications</i> , 2009 , 42, 471-483	0.4	
29	On a family of strong geometric spanners that admit local routing strategies. <i>Computational Geometry: Theory and Applications</i> , 2011 , 44, 319-328	0.4	
28	Spanners of Complete k-Partite Geometric Graphs. <i>SIAM Journal on Computing</i> , 2009 , 38, 1803-1820	1.1	
27	A Polynomial Bound for Untangling Geometric Planar Graphs. <i>Electronic Notes in Discrete Mathematics</i> , 2008 , 31, 213-218	0.3	
26	Succinct Data Structures for Approximating Convex Functions with Applications. <i>Lecture Notes in Computer Science</i> , 2003 , 97-107	0.9	
25	Guest Editors[Foreword. <i>Algorithmica</i> , 2005 , 42, 1-2	0.9	
24	Flips in Higher Order Delaunay Triangulations. Lecture Notes in Computer Science, 2020, 223-234	0.9	

23 Geometric Spanners with Small Chromatic Number **2008**, 75-88

22	Gathering by repulsion. Computational Geometry: Theory and Applications, 2020, 90, 101627	0.4
21	Parameterized complexity of two-interval pattern problem. <i>Theoretical Computer Science</i> , 2022 , 902, 21-28	1.1
20	Optimal Algorithms to Embed Trees in a Point Set 2002 , 29-43	
19	Induced Subgraphs of Bounded Degree and Bounded Treewidth. <i>Lecture Notes in Computer Science</i> , 2005 , 175-186	0.9
18	Computing the k-Crossing Visibility Region of a Point in a Polygon. <i>Lecture Notes in Computer Science</i> , 2019 , 10-21	0.9
17	Hamiltonicity for Convex Shape Delaunay and Gabriel Graphs. <i>Lecture Notes in Computer Science</i> , 2019 , 196-210	0.9
16	Reconstructing a Convex Polygon from Its (omega)-cloud. Lecture Notes in Computer Science, 2019, 25	-3ō.9
15	Drawing Graphs as Spanners. Lecture Notes in Computer Science, 2020, 310-324	0.9
14	Optimizing Constrained Offset and Scaled Polygonal Annuli. <i>Lecture Notes in Computer Science</i> , 1999 , 62-73	0.9
13	Essential Constraints of Edge-Constrained Proximity Graphs. <i>Lecture Notes in Computer Science</i> , 2016 , 55-67	0.9
12	Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings in a Simple Polygon. <i>Lecture Notes in Computer Science</i> , 2016 , 56-71	0.9
11	Improved Spanning Ratio for Low Degree Plane Spanners. Lecture Notes in Computer Science, 2016, 24	9-263
10	Skip Lift: A Probabilistic Alternative to Red-Black Trees. <i>Lecture Notes in Computer Science</i> , 2011 , 226-2	237.9
9	Biased Predecessor Search. Lecture Notes in Computer Science, 2014 , 755-764	0.9
8	The Price of Order. <i>Lecture Notes in Computer Science</i> , 2014 , 313-325	0.9
7	Local Routing in Convex Subdivisions. <i>International Journal of Computational Geometry and Applications</i> , 2020 , 30, 1-17	0.3
6	Computing the k-Visibility Region of a Point in a Polygon. <i>Theory of Computing Systems</i> , 2020 , 64, 1292	-1 3 <i>6</i> 6

5	Attraction-convexity and normal visibility. <i>Computational Geometry: Theory and Applications</i> , 2021 , 96, 101748	0.4
4	Routing on Heavy-Path WSPD-Spanners. Lecture Notes in Computer Science, 2021, 613-626	0.9
3	On the Spanning and Routing Ratios of the Directed (varTheta _6)-Graph. <i>Lecture Notes in Computer Science</i> , 2021 , 1-14	0.9
2	On the restricted k-Steiner tree problem. Journal of Combinatorial Optimization,1	0.9
1	On the Spanning and Routing Ratios of the Directed B-Graph. Computational Geometry: Theory and Applications, 2022, 101881	0.4