Chao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6656711/publications.pdf

Version: 2024-02-01

331670 434195 1,682 33 21 31 citations h-index g-index papers 33 33 33 1797 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Bio-inspired water resistant and fast multi-responsive Janus actuator assembled by cellulose nanopaper and graphene with lignin adhesion. Chemical Engineering Journal, 2022, 433, 133672.	12.7	29
2	Ultrafast improvement of cellulose accessibility via non-dissolving pretreatment with LiBr·3H2O under room temperature. Carbohydrate Polymers, 2022, 284, 119180.	10.2	7
3	Green synthesis of broccoli-derived carbon quantum dots as effective photosensitizers for the PDT effect testified in the model of mutant <i>Caenorhabditis elegans</i> . Biomaterials Science, 2022, 10, 2857-2864.	5.4	15
4	Impact of the Incorporation of Nano-Sized Cellulose Formate on the End Quality of Polylactic Acid Composite Film. Nanomaterials, 2022, 12, 1.	4.1	31
5	Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydrate Polymers, 2021, 251, 116975.	10.2	72
6	Influence of drying methods on the structure and properties of cellulose formate and its application as a reducing agent. International Journal of Biological Macromolecules, 2021, 170, 397-405.	7.5	9
7	LiDAR and Camera Calibration Using Near-Far Dual Targets. , 2021, , .		0
8	Valorization of Enzymatic Hydrolysis Residues from Corncob into Lignin-Containing Cellulose Nanofibrils and Lignin Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 677963.	4.1	28
9	A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine. Analytical and Bioanalytical Chemistry, 2021, 413, 4013-4022.	3.7	19
10	Integrated and sustainable preparation of functional nanocellulose via formic acid/choline chloride solvents pretreatment. Cellulose, 2021, 28, 9689-9703.	4.9	13
11	An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. Journal of Cleaner Production, 2021, 313, 127834.	9.3	43
12	Highly Sensitive Detection of Elevated Exosomal miR-122 Levels in Radiation Injury and Hepatic Inflammation Using an Aptamer-Functionalized SERS-Sandwich Assay. ACS Applied Bio Materials, 2021, 4, 8386-8395.	4.6	13
13	Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chemical Engineering Journal, 2020, 392, 123673.	12.7	71
14	Impact of ammonium sulfite-based sequential pretreatment combinations on two distinct saccharifications of wheat straw. RSC Advances, 2020, 10, 17129-17142.	3.6	4
15	Extrinsic Calibration between Camera and LiDAR Sensors by Virtual Planar Junctions Matching. , 2020, , .		0
16	Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Molecular Cell, 2019, 76, 938-952.e5.	9.7	80
17	Tailored and Integrated Production of Functional Cellulose Nanocrystals and Cellulose Nanofibrils via Sustainable Formic Acid Hydrolysis: Kinetic Study and Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 9449-9463.	6.7	78
18	A clean and effective potassium hydroxide pretreatment of corncob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Advances, 2019, 9, 11558-11566.	3.6	48

#	Article	IF	CITATIONS
19	Production of dissolving pulp from Eulaliopsis binata with the concept of integrated biorefinery. Cellulose, 2019, 26, 2087-2097.	4.9	6
20	Comparative Evaluation of the Efficient Conversion of Corn Husk Filament and Corn Husk Powder to Valuable Materials via a Sustainable and Clean Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 1327-1336.	6.7	73
21	Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk <i>via</i> a sustainable method. Journal of Materials Chemistry A, 2018, 6, 13021-13030.	10.3	132
22	Polydopamine/Cellulose Nanofibrils Composite Film as Potential Vehicle for Drug Delivery. ChemistrySelect, 2018, 3, 6852-6858.	1.5	9
23	A sustainable and effective potassium hydroxide pretreatment of wheat straw for the production of fermentable sugars. Bioresource Technology Reports, 2018, 3, 169-176.	2.7	23
24	Properties of Nanocelluloses and Their Application as Rheology Modifier in Paper Coating. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 8264-8273.	3.7	72
25	Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion. Sustainability, 2017, 9, 1246.	3.2	13
26	Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23, 2389-2407.	4.9	139
27	Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products, 2016, 94, 736-745.	5 . 2	121
28	Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, 2016, 151, 716-724.	10.2	278
29	Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharification of corn stover. Industrial Crops and Products, 2015, 76, 638-646.	5. 2	67
30	Hydrogen Peroxide-Assisted Sodium Carbonate Pretreatment for the Enhancement of Enzymatic Saccharification of Corn Stover. ACS Sustainable Chemistry and Engineering, 2015, 3, 3477-3485.	6.7	39
31	Quantitative characterization of the impact of pulp refining on enzymatic saccharification of the alkaline pretreated corn stover. Bioresource Technology, 2014, 169, 19-26.	9.6	33
32	Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnology for Biofuels, 2013, 6, 97.	6.2	76
33	Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue. Industrial Crops and Products, 2013, 50, 750-757.	5.2	41