Tobias Unruh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655907/publications.pdf

Version: 2024-02-01

71 2,260 22 46
papers citations h-index g-index

72 72 72 3456
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of Bromide on the Surfactant Stabilization Layer Density of Gold Nanorods. Langmuir, 2022, 38, 2227-2237.	1.6	2
2	Porphyrin adsorption and ligand exchange at the (110)-TiO <mml:math altimg="si58.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> / organic liquid interface. Surface Science, 2022, 721, 122066.	0.8	1
3	Tailoring the Nature of Interface States in Efficient and Stable Bilayer Organic Solar Cells by a Transferâ€Printing Technique. Advanced Materials Interfaces, 2022, 9, .	1.9	4
4	Radiolysisâ€Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquidâ€Phase Transmission Electron Microscopy and Xâ€Ray Diffraction. Advanced Science, 2022, 9, .	5.6	15
5	A Selfâ€Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance. Small, 2021, 17, e2100487.	5.2	5
6	Nanostructured Transparent Electrodes: A Selfâ€Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance (Small 20/2021). Small, 2021, 17, 2170096.	5.2	0
7	Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Applied Sciences (Switzerland), 2021, 11, 5925.	1.3	9
8	Oligothiophene Phosphonic Acids for Self-Assembled Monolayer Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32461-32466.	4.0	7
9	Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire. Acta Materialia, 2021, 220, 117318.	3.8	10
10	Thermochemical and Structural Studies of New Chiral and Achiral Long Alkyl Chain Functionalized Imidazolinium Ionic Liquids. Crystal Growth and Design, 2021, 21, 6276-6288.	1.4	2
11	Hydrogenated anatase TiO ₂ single crystals: defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H ₂ evolution activity. Journal of Materials Chemistry A, 2021, 9, 24932-24942.	5.2	7
12	Realâ€Time Study on Structure Formation and the Intercalation Process of Polymer: Fullerene Bulk Heterojunction Thin Films. Solar Rrl, 2020, 4, 1900508.	3.1	1
13	Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface Morphology toward Tuning the Optoelectronic Properties. Small, 2020, 16, e1903729.	5.2	10
14	Interface between Water–Solvent Mixtures and a Hydrophobic Surface. Langmuir, 2020, 36, 12077-12086.	1.6	4
15	Lipid Dynamics in Membranes Slowed Down by Transmembrane Proteins. Frontiers in Cell and Developmental Biology, 2020, 8, 579388.	1.8	16
16	Areaâ€Selective Growth of HfS ₂ Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces, 2020, 7, 2001493.	1.9	10
17	Unraveling Complexity: A Strategy for the Characterization of Anisotropic Core Multishell Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000145.	1.2	3
18	Thin Films: Areaâ€6elective Growth of HfS ₂ Thin Films via Atomic Layer Deposition at Low Temperature (Adv. Mater. Interfaces 23/2020). Advanced Materials Interfaces, 2020, 7, 2070130.	1.9	0

#	Article	IF	Citations
19	Axisymmetric and Asymmetric Naphthalene-Bisthienothiophene Based Nonfullerene Acceptors: On Constitutional Isomerization and Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 5734-5744.	2.5	14
20	Realâ€Time Study on Structure Formation and the Intercalation Process of Polymer: Fullerene Bulk Heterojunction Thin Films. Solar Rrl, 2020, 4, 2070035.	3.1	0
21	Unraveling the Microstructureâ€Related Device Stability for Polymer Solar Cells Based on Nonfullerene Smallâ€Molecular Acceptors. Advanced Materials, 2020, 32, e1908305.	11.1	161
22	The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5995-6003.	5.2	11
23	Nanoparticle Surfaces: Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface Morphology toward Tuning the Optoelectronic Properties (Small 2/2020). Small, 2020, 16, 2070009.	5.2	0
24	Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 15-28.	0.4	6
25	A novel experimental approach for nanostructure analysis: simultaneous small-angle X-ray and neutron scattering. Journal of Applied Crystallography, 2020, 53, 722-733.	1.9	20
26	X-ray characterization of physical-vapor-transport-grown bulk AlN single crystals. Journal of Applied Crystallography, 2020, 53, 1080-1086.	1.9	5
27	Evolution of the Ligand Shell Around Small ZnO Nanoparticles During the Exchange of Acetate by Catechol: A Small Angle Scattering Study. ChemNanoMat, 2019, 5, 116-123.	1.5	10
28	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	7.8	43
29	In Situ and Ex Situ Energy-Filtered Transmission Electron Microscopy Studies on the Nanomorpholgy Evolution of Organic Bulk Heterojunction Solar Cells. Microscopy and Microanalysis, 2019, 25, 2092-2093.	0.2	0
30	Internal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation. Langmuir, 2019, 35, 13578-13587.	1.6	9
31	Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18555-18563.	4.0	30
32	<i>$>$i>n</i> -Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. ACS Applied Nano Materials, 2019, 2, 3206-3219.	2.4	15
33	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	15.6	89
34	Multifunctional and Tunable Surfaces Based on Pyrene Functionalized Nanoparticles. Advanced Materials Interfaces, 2019, 6, 1801930.	1.9	12
35	Excitons and Trions in Oneâ€Photon―and Twoâ€Photonâ€Excited MoS ₂ : A Study in Dispersions. Advanced Materials, 2018, 30, e1706702.	11.1	45
36	Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5511-5518.	4.0	32

#	Article	IF	Citations
37	The influence of n- hexanol on the morphology and composition of CTAB micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 56-63.	2.3	18
38	Concentration dependent morphology and composition of <i>n</i> -alcohol modified cetyltrimethylammonium bromide micelles. Journal of Physics Condensed Matter, 2018, 30, 495001.	0.7	9
39	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nature Communications, 2018, 9, 5335.	5.8	91
40	Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23225-23234.	4.0	45
41	Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature Communications, 2017, 8, 14541.	5.8	298
42	Boron-containing MFI-type zeolites with a hierarchical nanosheet assembly for lipase immobilization. Dalton Transactions, 2017, 46, 4165-4169.	1.6	16
43	Changes within the stabilizing layer of ZnO nanoparticles upon washing. Journal of Colloid and Interface Science, 2017, 504, 356-362.	5.0	10
44	<i>In situ</i> characterization methods for evaluating microstructure formation and drying kinetics of solution-processed organic bulk-heterojunction films. Journal of Materials Research, 2017, 32, 1855-1879.	1.2	16
45	Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chemistry and Physics of Lipids, 2017, 206, 28-42.	1.5	16
46	Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence. Langmuir, 2017, 33, 13581-13589.	1.6	8
47	Realâ€Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. Advanced Energy Materials, 2016, 6, 1502025.	10.2	20
48	Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties. Scientific Reports, 2016, 6, 21439.	1.6	11
49	A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. Journal of Physical Chemistry B, 2016, 120, 3888-3903.	1.2	138
50	Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer : fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 2016, 4, 16136-16147.	5.2	22
51	Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size. Scientific Reports, 2016, 6, 30915.	1.6	25
52	Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup. Journal of Materials Chemistry C, 2016, 4, 2178-2186.	2.7	29
53	Extension of the LOPLS-AA Force Field for Alcohols, Esters, and Monoolein Bilayers and its Validation by Neutron Scattering Experiments. Journal of Physical Chemistry B, 2015, 119, 15287-15299.	1.2	42
54	Analysis of the structure of nanocomposites of triglyceride platelets and DNA. Physical Chemistry Chemical Physics, 2015, 17, 17939-17956.	1.3	7

#	Article	IF	Citations
55	<i>In Situ</i> Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. Journal of Physical Chemistry B, 2015, 119, 15370-15380.	1.2	38
56	Liquid Crystalline Phase Formation in Suspensions of Solid Trimyristin Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 11387-11396.	1.2	11
57	Mesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-Angle X-ray and Neutron Scattering and Computer Simulations. Journal of Physical Chemistry B, 2014, 118, 8808-8818.	1.2	21
58	Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles. Journal of Chemical Physics, 2014, 140, 214905.	1.2	11
59	Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering. Physical Review E, 2013, 87, 062316.	0.8	17
60	Collective Intermolecular Motions Dominate the Picosecond Dynamics of Short Polymer Chains. Physical Review Letters, 2013, 111, 173003.	2.9	11
61	Chain dynamics in a hexadecane melt as seen by neutron scattering and identified by molecular dynamics simulations. Journal of Physics Condensed Matter, 2012, 24, 375108.	0.7	11
62	The picosecond dynamics of the phospholipid dimyristoylphosphatidylcholine in mono- and bilayers. Soft Matter, 2012, 8, 3576.	1.2	11
63	The influence of additives on the nanoscopic dynamics of the phospholipid dimyristoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 199-208.	1.4	26
64	The slow short-time motions of phospholipid molecules with a focus on the influence of multiple scattering and fitting artefacts. Journal of Physics Condensed Matter, 2011, 23, 254205.	0.7	6
65	Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. Journal of Chemical Physics, 2010, 133, 164505.	1.2	61
66	Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering. Journal of the American Chemical Society, 2010, 132, 3232-3233.	6.6	120
67	Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scatteringa *†. Advanced Drug Delivery Reviews, 2007, 59, 379-402.	6.6	266
68	The high-resolution time-of-flight spectrometer TOFTOF. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580, 1414-1422.	0.7	124
69	Investigation on Particle Self-Assembly in Solid Lipid-Based Colloidal Drug Carrier Systems. Pharmaceutical Research, 2004, 21, 592-597.	1.7	27
70	Observation of Size-Dependent Melting in Lipid Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 10373-10377.	1.2	67
71	Investigating Growth of Gold Nanorods by Simultaneous Smallâ€Angle Xâ€Ray and Neutron Scattering. Particle and Particle Systems Characterization, 0, , 2100172.	1.2	3