Seung-Yeop Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655881/publications.pdf

Version: 2024-02-01

109264 106281 4,903 120 35 citations h-index papers

g-index 120 120 120 6433 docs citations times ranked citing authors all docs

65

#	Article	IF	CITATIONS
1	Fabrication of a highly stretchable cellulose with internally and externally dual-plasticized structure. European Polymer Journal, 2022, 162, 110882.	2.6	5
2	Switchable degradation of cellulose acetate composite by seawater-activated TiO2 photocatalyst. Cellulose, 2022, 29, 1501-1508.	2.4	4
3	Mechanochemically Synthesized Prussian Blue for Efficient Removal of Cesium Ions from Aqueous Solutions. ACS Omega, 2022, 7, 3222-3229.	1.6	9
4	A facile strategy for enhancing tensile toughness of poly(lactic acid) (PLA) by blending of a cellulose bio-toughener bearing a highly branched polycaprolactone. European Polymer Journal, 2022, 175, 111376.	2.6	16
5	Facile Sonochemical Synthesis of Flexible Fe-Based Metal–Organic Frameworks and Their Efficient Removal of Organic Contaminants from Aqueous Solutions. ACS Omega, 2022, 7, 23213-23222.	1.6	22
6	Remarkable thermoplasticity of branched cellulose copolymers: Graft-chain-dependent structural transition and thermoplasticity. Carbohydrate Polymers, 2021, 261, 117862.	5.1	9
7	Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: The effect of mesophase transition on mechanical properties. International Journal of Biological Macromolecules, 2021, 193, 1103-1113.	3.6	19
8	Comparison of glass transition dynamics between fluorophore-labeled and -doped flexible Poly(vinyl) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf S
9	Branched polyethylenimineâ€polyethylene glycol―β â€cyclodextrin polymers for efficient removal of bisphenol A and copper from wastewater. Journal of Applied Polymer Science, 2020, 137, 48475.	1.3	22
10	Arm-length-dependent phase transformation and dual dynamic healing behavior of supramolecular networks consisting of ureidopyrimidinone-end-functionalized semi-crystalline star polymers. European Polymer Journal, 2020, 138, 109976.	2.6	7
11	A regenerable antifouling membrane bearing a photoresponsive crosslinked polyethylenimine layer. Journal of Membrane Science, 2020, 604, 117955.	4.1	7
12	Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. Journal of Environmental Management, 2020, 260, 110001.	3.8	20
13	Functional mesoporous silica with controlled pore size for selective adsorption of free fatty acid and chlorophyll. Microporous and Mesoporous Materials, 2020, 306, 110410.	2.2	13
14	Effect of nanoscale confinement on molecular mobility and drug release properties of cellulose acetate/sulindac nanofibers. Journal of Applied Polymer Science, 2019, 136, 47863.	1.3	10
15	Self-reinforcement of alginate hydrogel via conformational control. European Polymer Journal, 2019, 116, 480-487.	2.6	13
16	Understanding and controlling the self-healing behavior of 2-ureido-4[1H]-pyrimidinone-functionalized clustery and dendritic dual dynamic supramolecular network. Polymer, 2019, 172, 13-26.	1.8	13
17	Thermally regenerable multi-functional membrane for heavy-metal detection and removal. Journal of Water Process Engineering, 2019, 29, 100757.	2.6	18
18	Manganese oxides with hierarchical structures derived from coordination polymers and their enhanced catalytic activity at low temperature for selective catalytic reduction of NO _x . Dalton Transactions, 2019, 48, 16395-16401.	1.6	7

#	Article	IF	CITATIONS
19	Rapid adsorption of bisphenol A from wastewater by \hat{l}^2 -cyclodextrin-functionalized mesoporous magnetic clusters. Applied Surface Science, 2019, 467-468, 178-184.	3.1	49
20	Mn-Doped Maghemite (γ-Fe ₂ O ₃) from Metal–Organic Framework Accompanying Redox Reaction in a Bimetallic System: The Structural Phase Transitions and Catalytic Activity toward NOx Removal. ACS Omega, 2018, 3, 2634-2640.	1.6	38
21	Fouling-resistant microfiltration membrane modified with magnetite nanoparticles by reversible conjunction. Separation and Purification Technology, 2018, 202, 299-306.	3.9	16
22	Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries. Journal of Power Sources, 2018, 383, 1-9.	4.0	69
23	Hydrophilic and positively charged polyethylenimine-functionalized mesoporous magnetic clusters for highly efficient removal of Pb(II) and $Cr(VI)$ from wastewater. Journal of Environmental Management, 2018, 206, 740-748.	3.8	25
24	Highly Branched Polycaprolactone/Glycidol Copolymeric Green Plasticizer by One-Pot Solvent-Free Polymerization. ACS Sustainable Chemistry and Engineering, 2018, 6, 9006-9017.	3.2	55
25	Confinement-Induced Change in Chain Topology of Ultrathin Polymer Fibers. Macromolecules, 2018, 51, 4229-4237.	2.2	8
26	Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process. Journal of Environmental Management, 2018, 223, 652-657.	3.8	45
27	Solvent-assisted heat treatment for enhanced chemical stability and mechanical strength of meta-aramid nanofibers. European Polymer Journal, 2018, 107, 46-53.	2.6	17
28	Tunable multilayer assemblies of nanofibrous composite mats as permeable protective materials against chemical warfare agents. RSC Advances, 2017, 7, 9964-9974.	1.7	12
29	Efficient and selective removal of heavy metals using microporous layered silicate AMH-3 as sorbent. Chemical Engineering Journal, 2017, 313, 975-982.	6.6	46
30	Sulfonated poly(ether ether ketone) composite membranes containing microporous layered silicate AMH-3 for improved membrane performance in vanadium redox flow batteries. Electrochimica Acta, 2017, 243, 220-227.	2.6	32
31	Amphiphobic meta -aramid nanofiber mat with improved chemical stability and mechanical properties. European Polymer Journal, 2017, 91, 111-120.	2.6	30
32	Formation of cellulose-carbene complex via depolymerization in ILs: Dependence of IL types on kinetics, conformation and dispersity. Carbohydrate Polymers, 2017, 159, 86-93.	5.1	5
33	Tubular Superstructures Composed of î±-Fe ₂ O ₃ Nanoparticles from Pyrolysis of Metal–Organic Frameworks in a Confined Space: Effect on Morphology, Particle Size, and Magnetic Properties. Crystal Growth and Design, 2017, 17, 4496-4500.	1.4	21
34	Flexible Poly(vinyl chloride) Nanocomposites Reinforced with Hyperbranched Polyglycerol–Functionalized Graphene Oxide for Enhanced Gas Barrier Performance. ACS Applied Materials & Daterfaces, 2017, 9, 33149-33158.	4.0	28
35	Magnetic core-hydrophilic shell nanosphere as stability-enhanced draw solute for forward osmosis (FO) application. Desalination, 2016, 397, 22-29.	4.0	32
36	Amplified visible light photocatalytic activity of mesoporous TiO2/ZnPc hybrid by cascade Mie light scattering. Microporous and Mesoporous Materials, 2016, 227, 169-175.	2.2	11

#	Article	IF	Citations
37	Structurally Enhanced Self-Plasticization of Poly(vinyl chloride) via Click Grafting of Hyperbranched Polyglycerol. Macromolecular Rapid Communications, 2016, 37, 2045-2051.	2.0	51
38	Photon correlation dynamics of unentangled star-shaped poly($\hat{l}\mu$ -caprolactone)s with extremely small branches and its interaction with plasticization in miscible blend system. Polymer, 2016, 103, 19-26.	1.8	2
39	Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass and Bioenergy, 2016, 93, 243-253.	2.9	49
40	Versatile surface charge-mediated anti-fouling UF/MF membrane comprising charged hyperbranched polyglycerols (HPGs) and PVDF membranes. RSC Advances, 2016, 6, 88959-88966.	1.7	23
41	Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols: a detailed study of their plasticization effect and migration resistance. Green Chemistry, 2016, 18, 999-1009.	4.6	69
42	Highly ordered cellulose II crystalline regenerated from cellulose hydrolyzed by 1-butyl-3-methylimidazolium chloride. Carbohydrate Polymers, 2016, 137, 321-327.	5.1	21
43	Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO 2 nanoparticles. Composites Science and Technology, 2015, 117, 9-17.	3.8	33
44	Total-molecular-weight-dependent Rouse dynamic of ultra-small branched star poly(Îμ-caprolactone)s as a single coarse-grain unit. Polymer, 2015, 79, 91-98.	1.8	4
45	Synthesis of ultra-small branched star poly($\langle i \rangle \hat{l} \mu \langle i \rangle$ -caprolactone)s and their high end group concentration effects on crystallization. Journal of Polymer Science Part A, 2015, 53, 1134-1142.	2.5	9
46	Anti-scaling ultrafiltration/microfiltration (UF/MF) polyvinylidene fluoride (PVDF) membranes with positive surface charges for Ca2+/silica-rich wastewater treatment. Journal of Membrane Science, 2015, 480, 122-128.	4.1	27
47	Adsorption-assisted photocatalytic activity of nitrogen and sulfur codoped TiO ₂ under visible light irradiation. Physical Chemistry Chemical Physics, 2015, 17, 17279-17287.	1.3	26
48	Regenerable anti-fouling active PTFE membrane with thermo-reversible "peel-and-stick―hydrophilic layer. Journal of Membrane Science, 2015, 491, 1-9.	4.1	29
49	Probing the Role of Side-Chain Interconnecting Groups in the Structural Hydrophobicity of Comblike Fluorinated Polystyrene by Solid-State NMR Spectroscopy. Langmuir, 2015, 31, 9473-9482.	1.6	6
50	Enhancement of hydrogen storage capacity and hydrostability of metal–organic frameworks (MOFs) with surface-loaded platinum nanoparticles and carbon black. Microporous and Mesoporous Materials, 2015, 202, 8-15.	2.2	56
51	Unentangled Star-Shape Poly($\hat{l}\mu$ -caprolactone)s as Phthalate-Free PVC Plasticizers Designed for Non-Toxicity and Improved Migration Resistance. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11118-11128.	4.0	80
52	A new architecture of bowl-type mesoporous TiO 2 via facile electrospray method. Microporous and Mesoporous Materials, 2014, 198, 170-174.	2.2	3
53	Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery. Electrochemistry Communications, 2014, 38, 68-70.	2.3	51
54	Amphiphilic Thiol Functional Linker Mediated Sustainable Anti-Biofouling Ultrafiltration Nanocomposite Comprising a Silver Nanoparticles and Poly(vinylidene fluoride) Membrane. ACS Applied Materials & Diterfaces, 2013, 5, 10705-10714.	4.0	63

#	Article	IF	CITATIONS
55	Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution. Journal of Membrane Science, 2013, 448, 125-134.	4.1	86
56	Delamination of microporous layered silicate by acid-hydrothermal treatment and its use for reduction of methanol crossover in DMFC. Microporous and Mesoporous Materials, 2013, 168, 148-154.	2.2	12
57	Highly dispersed mesoporous TiO2 spheres via acid treatment and its application for dye-sensitized solar cells. Powder Technology, 2013, 243, 130-138.	2.1	17
58	Integrating global education program into engineering curriculum: Developing global engineering education program at GECE. , 2012 , , .		0
59	Understanding and controlling gold nanoparticle formation from a robust self-assembled cyclodextrin solid template. Journal of Materials Chemistry, 2012, 22, 6017.	6.7	14
60	Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose, 2012, 19, 2141-2151.	2.4	53
61	Nafion/microporous titanosilicate ETS-4 composite membranes for effective methanol crossover reduction in direct methanol fuel cells. Journal of Membrane Science, 2012, 415-416, 353-359.	4.1	20
62	Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. Journal of Materials Chemistry, 2012, 22, 8345.	6.7	227
63	Gelation/fusion behavior of PVC plastisol with a cyclodextrin derivative and an anti-migration plasticizer in flexible PVC. European Polymer Journal, 2012, 48, 885-895.	2.6	24
64	Hyperbranched poly(amidoamine)/polysulfone composite membranes for Cd(II) removal from water. Journal of Membrane Science, 2012, 396, 83-91.	4.1	68
65	Functionalization of polysulfone hollow fiber membranes with amphiphilic \hat{l}^2 -cyclodextrin and their applications for the removal of endocrine disrupting plasticizer. Journal of Membrane Science, 2012, 409-410, 75-81.	4.1	38
66	Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach. Dalton Transactions, 2011, 40, 9989.	1.6	55
67	TiO2-encapsulating PVC capable of catalytic self-suppression of dioxin emission in waste incineration as an eco-friendly alternative to conventional PVC. Applied Catalysis B: Environmental, 2011, 104, 193-200.	10.8	22
68	Pore Size Distribution Analysis of Mesoporous TiO2 Spheres by 1H Nuclear Magnetic Resonance (NMR) Cryoporometry. Journal of Physical Chemistry C, 2010, 114, 17440-17445.	1.5	25
69	Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. Journal of Materials Chemistry, 2010, 20, 8320.	6.7	142
70	Solubilization and polymer analogous reactions of polyepichlorohydrin in ionic liquids. Journal of Applied Polymer Science, 2009, 114, 132-138.	1.3	6
71	Application of strain–time correspondence as a tool for structural analysis of acrylonitrile–butadiene copolymer nanocomposites with various organoclay loadings. European Polymer Journal, 2009, 45, 79-87.	2.6	5
72	Photocatalytic Inactivation of <i>E. coli</i> with a Mesoporous TiO ₂ Coated Film Using the Film Adhesion Method. Environmental Science & En	4.6	69

#	Article	IF	CITATIONS
73	Nafion/sulfated \hat{l}^2 -cyclodextrin composite membranes for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 49-54.	4.0	29
74	Thermally stable exfoliated poly(ethylene terephthalate) (PET) nanocomposites as prepared by selective removal of organic modifiers of layered silicate. Polymer Degradation and Stability, 2008, 93, 252-259.	2.7	34
75	Nonisothermal crystallization behavior of exfoliated poly(ethylene terephthalate)″ayered silicate nanocomposites in the presence and absence of organic modifier. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 989-999.	2.4	14
76	Effect of endgroup modification on dynamic viscoelastic relaxation and motion of hyperbranched poly(ether ketone)s. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2079-2089.	2.4	2
77	1H nuclear magnetic resonance (NMR) cryoporometry as a tool to determine the pore size distribution of ultrafiltration membranes. Journal of Membrane Science, 2008, 309, 233-238.	4.1	28
78	Reduced Migration from Flexible Poly(vinyl chloride) of a Plasticizer Containing \hat{l}^2 -Cyclodextrin Derivative. Environmental Science & Environmen	4.6	60
79	Microscopy and Microanalysis of Reverse-Osmosis and Nanofiltration Membranes. MRS Bulletin, 2008, 33, 27-32.	1.7	93
80	Suppression of Dioxin Emission in Co-Incineration of Poly(vinyl Chloride) with TiO ₂ -Encapsulating Polystyrene. Environmental Science & Envi	4.6	20
81	Hyperbranched Poly(Îμ-caprolactone) as a Nonmigrating Alternative Plasticizer for Phthalates in Flexible PVC. Environmental Science & Honology, 2007, 41, 3763-3768.	4.6	78
82	Supramolecular Self-Assembly of Architecturally Variant \hat{l}_{\pm} -Cyclodextrin Inclusion Complexes as Building Blocks of Hexagonally Aligned Microfibrils. Macromolecules, 2007, 40, 4225-4234.	2.2	33
83	Ionic Cluster Size Distributions of Swollen Nafion/Sulfated \hat{I}^2 -Cyclodextrin Membranes Characterized by Nuclear Magnetic Resonance Cryoporometry. Journal of Physical Chemistry B, 2007, 111, 9437-9443.	1.2	31
84	Evaluation of the Degree of Exfoliation in Poly($\hat{l}\mu$ -caprolactone)/Organoclay Nanocomposites Based on Viscoelastic Relaxation. Macromolecular Materials and Engineering, 2007, 292, 627-633.	1.7	13
85	The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Applied Catalysis A: General, 2007, 323, 110-118.	2.2	266
86	Determination of the glass transition temperature of polymer/layered silicate nanocomposites from positron annihilation lifetime measurements. Polymer, 2007, 48, 4271-4277.	1.8	38
87	Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 2007, 316, 85-91.	5.0	224
88	Influence of hyperbranched against linear architecture on crystallization behavior of poly(É-caprolactone)s in binary blends with poly(vinyl chloride). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 577-589.	2.4	8
89	Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes. Journal of Power Sources, 2006, 162, 1304-1311.	4.0	61
90	Pore-filling solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes for rechargeable lithium batteries. Journal of Membrane Science, 2006, 286, 15-21.	4.1	9

#	Article	IF	Citations
91	Non-Isothermal Crystallization of Hyperbranched Poly(É>-caprolactone)s and Their Linear Counterpart. Macromolecular Chemistry and Physics, 2006, 207, 1166-1173.	1.1	14
92	Solvent-free polymer electrolytes based on thermally annealed porous P(VdF-HFP)/P(EO-EC) membranes. Journal of Power Sources, 2005, 143, 219-226.	4.0	29
93	Wear-Resistant Ultra High Molecular Weight Polyethylene/Zirconia Composites Prepared by in situ Ziegler-Natta Polymerization. Macromolecular Chemistry and Physics, 2005, 206, 945-950.	1.1	24
94	Synthesis and characterization of a series of star-branched poly($\hat{l}\mu$ -caprolactone)s with the variation in arm numbers and lengths. Polymer, 2005, 46, 9725-9735.	1.8	35
95	Solvent-Free Polymer Electrolytes. Journal of the Electrochemical Society, 2005, 152, A1583.	1.3	26
96	Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State. Chemistry of Materials, 2005, 17, 1148-1156.	3.2	21
97	Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane. Environmental Science & Emp; Technology, 2005, 39, 1764-1770.	4.6	407
98	Effect of dendritic architecture on localized free volume of poly(ether ketone)s as probed by positron annihilation spectroscopy. Journal of Polymer Science Part A, 2004, 42, 3853-3859.	2.5	4
99	Concentration fluctuation and cooperative chain mobility of hyperbranched poly($\hat{l}\mu$ -caprolactone)s investigated by photon correlation spectroscopy. Polymer, 2004, 45, 7173-7183.	1.8	9
100	Amelioration of mechanical brittleness in hyperbranched polymer. 1. Macroscopic evaluation by dynamic viscoelastic relaxation. Polymer, 2004, 45, 6889-6896.	1.8	23
101	Molecular-level free volume as a crucial complementary factor affecting miscibility and nanoscopic homogeneity of polyarylate/poly(vinyl chloride) blends. Polymer, 2004, 45, 8153-8163.	1.8	7
102	Architectural Effects of Poly($\hat{l}\mu$ -caprolactone)s on the Crystallization Kinetics. Macromolecules, 2004, 37, 3745-3754.	2.2	37
103	Effect of Thermal History on Structural Changes in Melt-Intercalated Poly(-caprolactone)/Organoclay Nanocomposites Investigated by Dynamic Viscoelastic Relaxation Measurements. Macromolecular Materials and Engineering, 2003, 288, 503-508.	1.7	23
104	Synthesis and Characterization of Hyperbranched Poly($\hat{l}\mu$ -caprolactone)s Having Different Lengths of Homologous Backbone Segments. Macromolecules, 2003, 36, 8630-8637.	2,2	73
105	Synthesis of highly crosslinked monodisperse polymer particles: Effect of reaction parameters on the size and size distribution. Journal of Polymer Science Part A, 2002, 40, 4368-4377.	2.5	53
106	Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. Environmental Science & Environmental Science & 2001, 35, 4334-4340.	4.6	191
107	Correlation between local mobility and mechanical properties of high-speed melt-spun nylon-6 fibers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 993-1000.	2.4	7
108	Details of Dynamic Mechanical Properties of Dendritic Poly(ether ketone)s in Conjunction with their Highly Branched Structure and Degree of Branching. Macromolecular Materials and Engineering, 2001, 286, 17-25.	1.7	10

#	Article	IF	CITATIONS
109	Synthesis and Mesomorphic Properties of Poly(oxyethylene) with [(6-Heptylsulfonyl)hexylthio]methyl Side Groups. Macromolecular Rapid Communications, 2001, 22, 815-819.	2.0	14
110	Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane. Environmental Science & Environmental Environmenta	4.6	432
111	Synthesis and Mesomorphic Properties of Poly(oxyethylene) with [(6-Heptylsulfonyl)hexylthio]methyl Side Groups. Macromolecular Rapid Communications, 2001, 22, 815.	2.0	1
112	Processability of Hyperbranched Poly(ether ketone)s with Different Degrees of Branching from Viewpoints of Molecular Mobility and Comparison with Their Linear Analogue. Macromolecules, 2000, 33, 7557-7563.	2.2	47
113	Molecular Relaxation and Local Motion of Hyperbranched Poly(ether ketone)s with Reference to Their Linear Counterpart. 1. Effect of Degrees of Branching. Macromolecules, 2000, 33, 5536-5543.	2.2	31
114	Effect of molecular structure of polyarylates on the compatibility in polyarylate/poly(vinyl chloride) blends. Journal of Applied Polymer Science, 1998, 70, 2173-2180.	1.3	7
115	Morphology Formation in Mixing of Copolyester Thermoplastic Elastomer (Hytrel) with Poly(vinyl) Tj ETQq1 1 C Macromolecules, 1996, 29, 3521-3524.).784314 rgl 2.2	BT /Overlock 29
116	Monitoring of Homogenization and Analysis of Nanoscale Structure in a Butadieneâ^'Acrylonitrile Copolymer/Poly(vinyl chloride) Blendâ€. Macromolecules, 1996, 29, 5446-5452.	2.2	18
117	Structural changes of PVC plastisols in progress of gelation and fusion as investigated with temperature-dependent viscoelasticity, morphology, and light scattering. Journal of Applied Polymer Science, 1995, 55, 1683-1690.	1.3	15
118	Blends of PVC with Miscible Polymers. International Polymer Processing, 1995, 10, 24-29.	0.3	2
119	Determination of microphase structure and scale and scale of mixing in poly-É-caprolactone (PCL)/poly(vinyl chloride) (PVC) blend by high-resolution solid-state 13C-NMR spectroscopy with magic angle spinning and cross polarization. Journal of Applied Polymer Science, 1994, 53, 1823-1832.	1.3	12
120	Effect of plasticizer type on gelation and fusion of PVC plastisol, dialkyl phthalate series. Journal of Vinyl Technology, 1991, 13, 212-222.	0.2	22