
Paul D Wes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655826/publications.pdf Version: 2024-02-01

DALL D WES

#	Article	IF	CITATIONS
1	Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nature Neuroscience, 2017, 20, 1162-1171.	7.1	575
2	Critical dataâ€based reâ€evaluation of minocycline as a putative specific microglia inhibitor. Glia, 2016, 64, 1788-1794.	2.5	137
3	Targeting microglia for the treatment of Alzheimer's Disease. Glia, 2016, 64, 1710-1732.	2.5	144
4	Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64, 197-213.	2.5	112
5	Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathologica Communications, 2015, 3, 31.	2.4	473
6	Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models. PLoS ONE, 2015, 10, e0125614.	1.1	124
7	Tau Overexpression Impacts a Neuroinflammation Gene Expression Network Perturbed in Alzheimer's Disease. PLoS ONE, 2014, 9, e106050.	1.1	103
8	Microglial Biology in Neuroinflammatory Disease: Pharmaco-industrial Approach to Target Validation. , 2014, , 187-211.		2
9	Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder. International Journal of Neuropsychopharmacology, 2012, 15, 247-265.	1.0	62
10	Blocking IL-1 Signaling Rescues Cognition, Attenuates Tau Pathology, and Restores Neuronal β-Catenin Pathway Function in an Alzheimer's Disease Model. Journal of Immunology, 2011, 187, 6539-6549.	0.4	359
11	Tau Transgenic Mice as Models for Cerebrospinal Fluid Tau Biomarkers. Journal of Alzheimer's Disease, 2011, 24, 127-141.	1.2	80
12	CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 32713-32722.	1.6	225
13	Induction of the Phase II Detoxification Pathway Suppresses Neuron Loss in <i>Drosophila</i> Models of Parkinson's Disease. Journal of Neuroscience, 2008, 28, 465-472.	1.7	142
14	Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discovery Today, 2006, 11, 119-126.	3.2	95
15	Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinson's Disease. Current Biology, 2005, 15, 1572-1577.	1.8	332
16	Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin duringDrosophila development. Developmental Dynamics, 2005, 232, 817-826.	0.8	20
17	Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8024-8029.	3.3	374
18	C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature, 2001, 410, 698-701.	13.7	213

PAUL D WES

#	Article	IF	CITATIONS
19	Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nature Neuroscience, 1999, 2, 447-453.	7.1	138
20	Retinal Targets for Calmodulin Include Proteins Implicated in Synaptic Transmission. Journal of Biological Chemistry, 1998, 273, 31297-31307.	1.6	89
21	TRPC1, a human homolog of a Drosophila store-operated channel Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9652-9656.	3.3	571