José Javier Peguero-Pina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655818/publications.pdf

Version: 2024-02-01

72 papers 2,838 citations

28 h-index 51 g-index

74 all docs

74 docs citations

74 times ranked 3574 citing authors

#	Article	IF	CITATIONS
1	Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science, 2012, 193-194, 70-84.	1.7	563
2	Physico-chemical properties of plant cuticles and their functional and ecological significance. Journal of Experimental Botany, 2017, 68, 5293-5306.	2.4	156
3	Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age. Plant Physiology, 2014, 166, 168-180.	2.3	151
4	Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia, 2008, 156, 1-11.	0.9	117
5	Cellâ€level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytologist, 2017, 214, 585-596.	3.5	104
6	Leaf anatomical properties in relation to differences in mesophyll conductance to CO ₂ and photosynthesis in two related Mediterranean <i>Abies</i> species. Plant, Cell and Environment, 2012, 35, 2121-2129.	2.8	99
7	Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Functional Plant Biology, 2009, 36, 453.	1.1	75
8	Relationship between ultrasonic properties and structural changes in the mesophyll during leaf dehydration. Journal of Experimental Botany, 2011, 62, 3637-3645.	2.4	71
9	Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Annals of Botany, 2014, 114, 301-313.	1.4	66
10	Air-coupled broadband ultrasonic spectroscopy as a new non-invasive and non-contact method for the determination of leaf water status. Journal of Experimental Botany, 2010, 61, 1385-1391.	2.4	62
11	Physiological performance of silver-fir (Abies alba Mill.) populations under contrasting climates near the south-western distribution limit of the species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 226-236.	0.6	55
12	Leaf morphological and physiological adaptations of a deciduous oak (<i>Quercus faginea</i> Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (<i>Quercus) Tj ETQq0 0 0 rgBT</i>	JO werlock	: 12 0 Tf 50 29
13	Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity. Forests, 2020, 11, 1028.	0.9	52
14	Noncontact and noninvasive study of plant leaves using air-coupled ultrasounds. Applied Physics Letters, 2009, 95, .	1.5	50
15	Microwave l-band (1730MHz) accurately estimates the relative water content in poplar leaves. A comparison with a near infrared water index (R1300/R1450). Agricultural and Forest Meteorology, 2011, 151, 827-832.	1.9	49
16	<i>In situ</i> warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. New Phytologist, 2018, 218, 1406-1418.	3.5	48
17	Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. Journal of Experimental Botany, 2017, 68, 2871-2883.	2.4	47
18	Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica). Physiologia Plantarum, 2010, 138, 48-59.	2.6	45

#	Article	IF	Citations
19	The reflectivity in the Sâ€band and the broadband ultrasonic spectroscopy as new tools for the study of water relations in <i>Vitis vinifera</i> L Physiologia Plantarum, 2013, 148, 512-521.	2.6	43
20	Shear waves in vegetal tissues at ultrasonic frequencies. Applied Physics Letters, 2013, 102, .	1.5	43
21	Monitoring Plant Response to Environmental Stimuli by Ultrasonic Sensing of the Leaves. Ultrasound in Medicine and Biology, 2014, 40, 2183-2194.	0.7	41
22	Light acclimation of photosynthesis in two closely related firs (Abies pinsapoBoiss. andAbies) Tj ETQq0 0 0 rgBT /O 300-310.		O Tf 50 627 1 40
23	Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection. Journal of Experimental Botany, 2013, 64, 1649-1661.	2.4	38
24	Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytologist, 2021, 230, 521-534.	3.5	38
25	Ancient cell structural traits and photosynthesis in today's environment. Journal of Experimental Botany, 2017, 68, 1389-1392.	2.4	32
26	Air-coupled ultrasonic resonant spectroscopy for the study of the relationship between plant leaves' elasticity and their water content. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 319-325.	1.7	30
27	Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiology, 2017, 37, 1084-1094.	1.4	30
28	Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods, 2019, 15, 128.	1.9	30
29	Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. and Abies pinsapo Boiss Tree Physiology, 2011, 31, 1067-1075.	1.4	29
30	Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (<i>Quercus coccifera</i> L.). Plant, Cell and Environment, 2013, 36, 579-589.	2.8	29
31	Ultrasonic Sensing of Plant Water Needs for Agriculture. Sensors, 2016, 16, 1089.	2.1	29
32	Changes of secondary metabolites in Pinus sylvestris L. needles under increasing soil water deficit. Annals of Forest Science, 2017, 74, 1.	0.8	29
33	Cavitation Limits the Recovery of Gas Exchange after Severe Drought Stress in Holm Oak (Quercus ilex) Tj ETQq1	10.78431	4.rgBT /Ove
34	Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in <i>Quercus coccifera</i> L. under Mediterranean conditions. Tree Physiology, 2016, 36, 356-367.	1.4	27
35	Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different Roads to Rome. Current Forestry Reports, 2020, 6, 260-281.	3.4	26
36	Hydraulic and photosynthetic limitations prevail over root nonâ€structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks. Plant, Cell and Environment, 2020, 43, 1944-1957.	2.8	24

#	Article	IF	Citations
37	Embolism induced by winter drought may be critical for the survival of Pinus sylvestris L. near its southern distribution limit. Annals of Forest Science, 2011, 68, 565.	0.8	23
38	Drought Response in Forest Trees: From the Species to the Gene. , 2012, , 293-333.		23
39	Evidence of vulnerability segmentation in a deciduous Mediterranean oak (Quercus subpyrenaica E. H.) Tj ETQq1	1 8:3843	14 rgBT /Over
40	Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?. Tree Physiology, 2020, 40, 827-840.	1.4	22
41	Évaluation des dégâts du froid dans les troncs de Pinus sylvestris L. par la mesure de la fluorescence de la chlorophylle dans le chlorenchyme cortical de l'écorce. Annals of Forest Science, 2008, 65, 813-813.	0.8	20
42	Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity. Tree Physiology, 2017, , 137-193.	0.9	20
43	Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue. Photosynthesis Research, 2009, 99, 49-61.	1.6	18
44	Evaluation of unventilated treeshelters in the context of Mediterranean climate: Insights from a study on Quercus faginea seedlings assessed with a 3D architectural plant model. Ecological Engineering, 2010, 36, 517-526.	1.6	17
45	Contrasting functional strategies following severe drought in two Mediterranean oaks with different leaf habit: <i>Quercus faginea</i> and <i>Quercus ilex</i> subsp. <i>rotundifolia</i> . Tree Physiology, 2021, 41, 371-387.	1.4	17
46	Ultrasonic spectroscopy allows a rapid determination of the relative water content at the turgor loss point: a comparison with pressure-volume curves in 13 woody species. Tree Physiology, 2013, 33, 695-700.	1.4	15
47	The Application of Leaf Ultrasonic Resonance to Vitis vinifera L. Suggests the Existence of a Diurnal Osmotic Adjustment Subjected to Photosynthesis. Frontiers in Plant Science, 2016, 7, 1601.	1.7	13
48	Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss.). Tree Physiology, 2014, 34, 1321-1333.	1.4	12
49	Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. Journal of Ecology, 2018, 106, 2218-2229.	1.9	12
50	Non-contact ultrasonic resonant spectroscopy resolves the elastic properties of layered plant tissues. Applied Physics Letters, 2018, 113, .	1.5	12
51	Chl Fluorescence Parameters and Leaf Reflectance Indices Allow Monitoring Changes in the Physiological Status of Quercus ilex L. under Progressive Water Deficit. Forests, 2018, 9, 400.	0.9	12
52	Determination of plant leaves water status using air-coupled ultrasounds. , 2009, , .		11
53	Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations. PLoS ONE, 2017, 12, e0183970.	1.1	11
54	Oaks and People: A Long Journey Together. Tree Physiology, 2017, , 1-11.	0.9	10

#	Article	IF	CITATIONS
55	Day length regulates seasonal patterns of stomatal conductance in Quercus species. Plant, Cell and Environment, 2020, 43, 28-39.	2.8	10
56	Genetic and environmental characterization of Abies alba Mill. populations at its western rear edge. Pirineos, 2014, 169, e007.	0.6	9
57	Summer and winter can equally stress holm oak (Quercus ilex L.) in Mediterranean areas: A physiological view. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 290, 152058.	0.6	8
58	Surface Density of the Spongy and Palisade Parenchyma Layers of Leaves Extracted From Wideband Ultrasonic Resonance Spectra. Frontiers in Plant Science, 2020, 11, 695.	1.7	7
59	Self-shading in cork oak seedlings: Functional implications in heterogeneous light environments. Acta Oecologica, 2010, 36, 423-430.	0.5	6
60	The Role of Mesophyll Conductance in Oak Photosynthesis: Among- and Within-Species Variability. Tree Physiology, 2017, , 303-325.	0.9	6
61	Photoprotective Mechanisms in the Genus Quercus in Response to Winter Cold and Summer Drought. Tree Physiology, 2017, , 361-391.	0.9	6
62	Elevated atmospheric CO 2 modifies responses to waterâ€stress and flowering of Mediterranean desert truffle mycorrhizal shrubs. Physiologia Plantarum, 2020, 170, 537-549.	2.6	6
63	Southeastern Rear Edge Populations of Quercus suber L. Showed Two Alternative Strategies to Cope with Water Stress. Forests, 2020, 11, 1344.	0.9	5
64	Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Computers and Electronics in Agriculture, 2022, 199, 107160.	3.7	4
65	Shear waves in plant leaves at ultrasonic frequencies: Shear properties of vegetal tissues. , 2012, , .		3
66	Leaf vein density enhances vascular redundancy instead of carbon uptake at the expense of increasing water leaks in oaks. Environmental and Experimental Botany, 2021, 188, 104527.	2.0	3
67	Minimum Leaf Conductance (gmin) Is Higher in the Treeline of Pinus uncinata Ram. in the Pyrenees: Michaelis' Hypothesis Revisited. Frontiers in Plant Science, 2021, 12, 786933.	1.7	3
68	Changes in the Abundance of Monoterpenes from Breathable Air of a Mediterranean Conifer Forest: When Is the Best Time for a Human Healthy Leisure Activity?. Forests, 2022, 13, 965.	0.9	3
69	Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?. Tree Physiology, 2019, , .	1.4	2
70	Change in the terpenoid profile and secondary growth in declining stands of Pinus sylvestris L. under mediterranean influence as a response to local factors. Pirineos, 2014, 169, e003.	0.6	2
71	Cell-level anatomy explains leaf age-dependent declines in mesophyll conductance and photosynthetic capacity in the evergreen Mediterranean oak <i>Quercus ilex</i> subsp. <i>rotundifolia</i> Tree Physiology, 2022, , .	1.4	2
72	Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy. Physics Procedia, 2015, 63, 91-96.	1.2	0