
Liqing Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655759/publications.pdf Version: 2024-02-01

LIQING SONG

#	Article	IF	CITATIONS
1	Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. Journal of Molecular Neuroscience, 2022, 72, 772-791.	1.1	12
2	Cerebellar Differentiation from Human Stem Cells Through Retinoid, Wnt, and Sonic Hedgehog Pathways. Tissue Engineering - Part A, 2021, 27, 881-893.	1.6	15
3	Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines, 2021, 9, 190.	1.4	26
4	Human Stem Cell-derived Aggregates of Forebrain Astroglia Respond to Amyloid Beta Oligomers. Tissue Engineering - Part A, 2020, 26, 527-542.	1.6	6
5	Media supplementation for targeted manipulation of monoclonal antibody galactosylation and fucosylation. Biotechnology and Bioengineering, 2020, 117, 3310-3321.	1.7	7
6	Nuclear translocation of the unliganded glucocorticoid receptor is influenced by membrane fluidity, but not A2AR agonism. Steroids, 2020, 160, 108641.	0.8	2
7	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	1.6	119
8	Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Scientific Reports, 2019, 9, 5977.	1.6	104
9	Studying Heterotypic Cell–Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration. Cells, 2019, 8, 299.	1.8	15
10	Genomics Analysis of Metabolic Pathways of Human Stem Cell-Derived Microglia-Like Cells and the Integrated Cortical Spheroids. Stem Cells International, 2019, 2019, 1-21.	1.2	24
11	Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137.	1.6	55
12	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	1.6	25
13	Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering - Part A, 2018, 24, 418-431.	1.6	35
14	Neural Differentiation of Spheroids Derived from Human Induced Pluripotent Stem Cells–Mesenchymal Stem Cells Coculture. Tissue Engineering - Part A, 2018, 24, 915-929.	1.6	19
15	Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 2922-2933.	2.6	25
16	Vascular differentiation from pluripotent stem cells in 3â€D auxetic scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1679-1689.	1.3	21
17	PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells. Tissue Engineering - Part C: Methods, 2017, 23, 627-640.	1.1	16
18	Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson's ratio. Acta Biomaterialia, 2017, 49, 192-203.	4.1	49

LIQING SONG

#	Article	IF	CITATIONS
19	Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 49-58.	2.5	111
20	Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis, 2016, 12, 1-15.	0.4	13
21	Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	108
22	Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor. Methods in Molecular Biology, 2015, 1502, 119-128.	0.4	7