
Moises A Carreon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/665567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Evidence for a Dicopper Core within Zeolite Mordenite Side Pockets. Journal of Physical Chemistry C, 2022, 126, 5550-5554.	3.1	2
2	Evaluating the effect of ionomer chemical composition in silver-ionomer catalyst inks toward the oxygen evolution reaction by half-cell measurements and water electrolysis. Electrochimica Acta, 2022, 412, 140124.	5.2	5
3	Porous Organic Cages CC3 and CC2 as Adsorbents for the Separation of Carbon Dioxide from Nitrogen and Hydrogen. Industrial & Engineering Chemistry Research, 2022, 61, 10547-10553.	3.7	9
4	CC3 porous organic cage crystals and membranes for the non-thermal plasma catalytic ammonia synthesis. Chemical Engineering Journal Advances, 2022, 11, 100340.	5.2	14
5	Methane storage scale-up using hydrates & metal organic framework HKUST-1 in a packed column. Fuel, 2022, 325, 124920.	6.4	10
6	CO2/CH4 separation characteristics of poly(RTIL)-RTIL-zeolite mixed-matrix membranes evaluated under binary feeds up to 40 bar and 50°C. Journal of Membrane Science, 2021, 621, 118979.	8.2	13
7	Plasma ammonia synthesis over mesoporous silica SBA-15. Journal Physics D: Applied Physics, 2021, 54, 264003.	2.8	22
8	Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67. ACS Applied Materials & Interfaces, 2021, 13, 21338-21348.	8.0	49
9	Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. Journal of Membrane Science, 2021, 623, 119078.	8.2	28
10	Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67 for Enhanced Methane Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 9001-9010.	6.7	62
11	Towards continuous deoxygenation of acetic acid catalyzed by recyclable mono/bi/trimetallic zeolite catalysts. Journal of Catalysis, 2021, 401, 137-148.	6.2	6
12	Tunability of ammonia adsorption over NaP zeolite. Microporous and Mesoporous Materials, 2021, 324, 111288.	4.4	18
13	Porous Organic Cage CC3: An Effective Promoter for Methane Hydrate Formation for Natural Gas Storage. Journal of Physical Chemistry C, 2021, 125, 20512-20521.	3.1	18
14	Promoting Methane Hydrate Formation for Natural Gas Storage over Chabazite Zeolites. ACS Applied Energy Materials, 2021, 4, 13420-13424.	5.1	16
15	Decarboxylation of stearic acid over Ni/MOR catalysts. Journal of Chemical Technology and Biotechnology, 2020, 95, 102-110.	3.2	9
16	Exploiting hydrophobicity and hydrophilicity in nanopores as a design principle for "smart―MOF microtanks for methane storage. Molecular Systems Design and Engineering, 2020, 5, 166-176.	3.4	4
17	Synthesis of porous organic cage CC3 via solvent modulated evaporation. Inorganica Chimica Acta, 2020, 501, 119312.	2.4	6
18	Experimental strategies to increase ammonia yield in plasma catalysis over LTA and BEA zeolites. IOP SciNotes, 2020, 1, 024801.	0.8	16

#	Article	IF	CITATIONS
19	Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity. ACS Applied Materials & Interfaces, 2020, 12, 53510-53518.	8.0	97
20	Mesoporous microspherical NiO catalysts for the deoxygenation of oleic acid. Catalysis Communications, 2020, 143, 106046.	3.3	11
21	Separation of Light Gases from Xenon over Porous Organic Cage Membranes. ACS Applied Materials & Interfaces, 2020, 12, 32182-32188.	8.0	40
22	Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO _{1–<i>x</i>} /MOR Validated by Experiments and Simulations. ACS Applied Energy Materials, 2020, 3, 8233-8239.	5.1	6
23	Porous crystals as membranes. Science, 2020, 367, 624-625.	12.6	32
24	Synthesis of ZIF-11 crystals by microwave heating. New Journal of Chemistry, 2020, 44, 3562-3565.	2.8	19
25	Ammonia Synthesis via Atmospheric Plasma Catalysis: Zeolite 5A, a Case of Study. Industrial & Engineering Chemistry Research, 2020, 59, 5167-5176.	3.7	63
26	Solvothermal synthesis of porous organic cage CC3 in the presence of dimethylformamide as solvent. CrystEngComm, 2019, 21, 5039-5044.	2.6	5
27	Green deoxygenation of fatty acids to transport fuels over metal-organic frameworks as catalysts and catalytic supports. , 2019, , 285-318.		2
28	Microwave-assisted synthesis of porous organic cages CC3 and CC2. CrystEngComm, 2019, 21, 4534-4537.	2.6	17
29	Chabazite Zeolite SAPO-34 Membranes for He/CH ₄ Separation. , 2019, 1, 655-659.		22
30	Nonthermal Plasma Synthesis of Ammonia over Ni-MOF-74. ACS Sustainable Chemistry and Engineering, 2019, 7, 377-383.	6.7	73
31	Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts. Catalysts, 2019, 9, 42.	3.5	18
32	SAPO-34 membranes for xenon capture from air. Journal of Membrane Science, 2019, 573, 288-292.	8.2	21
33	Time Dependent Structural Evolution of Porous Organic Cage CC3. Crystal Growth and Design, 2018, 18, 921-927.	3.0	19
34	Microporous Crystalline Membranes for Kr/Xe Separation: Comparison Between AlPO-18, SAPO-34, and ZIF-8. ACS Applied Nano Materials, 2018, 1, 463-470.	5.0	39
35	Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes. ACS Applied Materials & Interfaces, 2018, 10, 582-592.	8.0	44
36	Integrated gas hydrate-membrane system for natural gas purification. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	22

#	Article	IF	CITATIONS
37	Molecular sieve membranes for N ₂ /CH ₄ separation. Journal of Materials Research, 2018, 33, 32-43.	2.6	53
38	SAPO-34/5A Zeolite Bead Catalysts for Furan Production from Xylose and Glucose. ACS Omega, 2018, 3, 16253-16259.	3.5	16
39	Decarboxylation of Diunsaturated Linoleic Acid to Heptadecane over Zeolite Supported Pt/ZIF-67 Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 15991-15997.	3.7	16
40	Recovery of xenon from air over ZIF-8 membranes. Chemical Communications, 2018, 54, 8976-8979.	4.1	23
41	Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes for Kr/Xe Separation. Industrial & Engineering Chemistry Research, 2017, 56, 1682-1686.	3.7	76
42	Noble metal-free catalytic decarboxylation of oleic acid to n-heptadecane on nickel-based metal–organic frameworks (MOFs). Catalysis Science and Technology, 2017, 7, 3027-3035.	4.1	22
43	Highly Permeable AlPO-18 Membranes for N ₂ /CH ₄ Separation. Industrial & Engineering Chemistry Research, 2017, 56, 4113-4118.	3.7	54
44	Synthesis of SAPO-56 with controlled crystal size. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	4
45	Membrane Processes for N2–CH4 Separation. , 2017, , 145-194.		1
46	Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 31993-32000.	8.0	59
47	Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation. Journal of Membrane Science, 2017, 524, 117-123.	8.2	52
48	Zeolite adsorbent-MOF layered nanovalves for CH4 storage. Adsorption, 2017, 23, 19-24.	3.0	22
49	Effect of reaction parameters on the decarboxylation of oleic acid over Pt/ <scp>ZIF</scp> â€67membrane/zeolite <scp>5A</scp> bead catalysts. Journal of Chemical Technology and Biotechnology, 2017, 92, 52-58.	3.2	29
50	Operando Raman-mass spectrometry investigation of hydrogen release by thermolysis of ammonia borane confined in mesoporous materials. Microporous and Mesoporous Materials, 2016, 226, 454-465.	4.4	19
51	Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. Journal of Molecular Catalysis A, 2016, 422, 18-22.	4.8	57
52	Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 10324-10333.	8.0	100
53	Nanovalved Adsorbents for CH ₄ Storage. Nano Letters, 2016, 16, 3309-3313.	9.1	17
54	Kr/Xe Separation over a Chabazite Zeolite Membrane. Journal of the American Chemical Society, 2016, 138, 9791-9794.	13.7	103

#	Article	IF	CITATIONS
55	Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies. Journal of Crystal Growth, 2016, 455, 152-156.	1.5	41
56	Highly permeable N2/CH4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature. Microporous and Mesoporous Materials, 2016, 224, 36-42.	4.4	44
57	Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination, 2016, 377, 128-137.	8.2	62
58	Microporous Crystalline Membranes and Their Application for CO2 Separations. World Scientific Series in Nanoscience and Nanotechnology, 2015, , 401-434.	0.1	1
59	Methanolysis of olive oil for biodiesel synthesis over ZnO nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 583-595.	1.7	11
60	SAPO-34 Membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation. Journal of Membrane Science, 2015, 487, 141-151.	8.2	73
61	Kinetics of transformation on ZIF-67 crystals. Journal of Crystal Growth, 2015, 418, 158-162.	1.5	64
62	Cu, Al and Ga based metal organic framework catalysts for the decarboxylation of oleic acid. Catalysis Science and Technology, 2015, 5, 2777-2782.	4.1	51
63	Decarboxylation of Oleic Acid to Heptadecane over Pt Supported on Zeolite 5A Beads. ACS Catalysis, 2015, 5, 6497-6502.	11.2	75
64	Metal organic framework membranes for carbon dioxide separation. Chemical Engineering Science, 2015, 124, 3-19.	3.8	195
65	Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science and Technology, 2015, 5, 380-388.	4.1	74
66	Porous crystals as active catalysts for the synthesis of cyclic carbonates. Journal of Applied Polymer Science, 2014, 131, .	2.6	40
67	Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth. Journal of Porous Materials, 2014, 21, 235-240.	2.6	31
68	Decarboxylation and further transformation of oleic acid over bifunctional, Pt/SAPO-11 catalyst and Pt/chloride Al2O3 catalysts. Journal of Molecular Catalysis A, 2014, 386, 14-19.	4.8	76
69	Alumina-supported cobalt–adeninate MOF membranes for CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2014, 2, 1239-1241.	10.3	96
70	Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates. Dalton Transactions, 2013, 42, 6732.	3.3	42
71	Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catalysis Communications, 2013, 32, 36-40.	3.3	183
72	AlPO-18 membranes for CO2/CH4 separation. Chemical Communications, 2012, 48, 2310.	4.1	90

#	Article	IF	CITATIONS
73	Catalytic activity of metal organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction. Catalysis Today, 2012, 198, 215-218.	4.4	106
74	Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO ₂ to Chloropropene Carbonate. ACS Catalysis, 2012, 2, 180-183.	11.2	419
75	Growth of zeolitic imidazolate framework-8 crystals from the solid–liquid interface. Journal of Materials Chemistry, 2012, 22, 7684.	6.7	28
76	Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48, 5130.	4.1	111
77	Room-Temperature Synthesis of ZIF-8: The Coexistence of ZnO Nanoneedles. Chemistry of Materials, 2011, 23, 3590-3592.	6.7	102
78	Amino-Functionalized SAPO-34 Membranes for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Langmuir, 2011, 27, 2888-2894.	3.5	125
79	Catalytic transformations of methyl oleate and biodiesel over mesoporous gallium–niobium oxides. Catalysis Communications, 2011, 12, 644-650.	3.3	15
80	Epoxidation of cyclooctene over mesoporous Ga, Ga–Nb, and Ga–Mo oxide catalysts. Catalysis Communications, 2011, 15, 46-51.	3.3	11
81	Photocatalytic degradation of organic dyes by mesoporous nanocrystalline anatase. Materials Chemistry and Physics, 2011, 125, 474-478.	4.0	12
82	Microwave-assisted synthesis of nanocrystalline mesoporous gallium oxide. Microporous and Mesoporous Materials, 2010, 130, 97-102.	4.4	37
83	Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352, 7-13.	8.2	97
84	Structural Evolution of Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society, 2010, 132, 18030-18033.	13.7	619
85	Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO ₂ /CH ₄ Separation. Journal of the American Chemical Society, 2010, 132, 76-78.	13.7	883
86	Thermally Stable Nanocrystalline Mesoporous Gallium Oxide Phases. European Journal of Inorganic Chemistry, 2009, 2009, 3275-3281.	2.0	16
87	Mesostructured mixed Mo–V–Nb oxides for propane ammoxidation. Catalysis Communications, 2009, 10, 416-420.	3.3	13
88	Microwave assisted phase transformation of silicoaluminophosphate zeolite crystals. Journal of Materials Chemistry, 2009, 19, 3138.	6.7	44
89	Self-assembly hydrothermal assisted synthesis of mesoporous anatase in the presence of ethylene glycol. Catalysis Communications, 2009, 10, 2036-2040.	3.3	17
90	Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. Journal of Physical Chemistry B, 2008, 112, 16261-16265.	2.6	80

#	Article	IF	CITATIONS
91	Alumina-Supported SAPO-34 Membranes for CO ₂ /CH ₄ Separation. Journal of the American Chemical Society, 2008, 130, 5412-5413.	13.7	291
92	Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films. Journal of Materials Chemistry, 2007, 17, 82-89.	6.7	106
93	Vanadium-phosphorus-oxides: From fundamentals of n-Butane oxidation to synthesis of new phases. Catalysis, 2007, , 1-45.	1.0	24
94	Thermally stable mesoporous barium–iron mixed oxide phases. Materials Letters, 2006, 60, 2119-2124.	2.6	4
95	Mesoporous Nanocrystalline Mixed Metal Oxides from Heterometallic Alkoxide Precursors: Cobalt–Nickel Oxide Spinels for Propane Oxidation. European Journal of Inorganic Chemistry, 2006, 2006, 4983-4988.	2.0	49
96	Synthesis of catalytic materials on multiple length scales: from mesoporous to macroporous bulk mixed metal oxides for selective oxidation of hydrocarbons. Catalysis Today, 2005, 99, 137-142.	4.4	19
97	Ordered Meso―and Macroporous Binary and Mixed Metal Oxides. European Journal of Inorganic Chemistry, 2005, 2005, 27-43.	2.0	157
98	Mesostructured and mesoporous pure and substituted barium hexaferrite phases. Studies in Surface Science and Catalysis, 2005, 156, 287-294.	1.5	0
99	Ordered Mesostructured Mixed Metal Oxides: Microporous VPO Phases for n-Butane Oxidation to Maleic Anhydride. Catalysis Letters, 2004, 92, 11-16.	2.6	21
100	Phase transformations in mesostructured VPO/surfactant composites. Microporous and Mesoporous Materials, 2004, 71, 57-63.	4.4	15
101	Phase transformations in mesostructured vanadium–phosphorus-oxides. Catalysis Today, 2003, 78, 303-310.	4.4	18
102	Synthesis and characterization of mesostructured vanadium-phosphorus-oxide phases. Studies in Surface Science and Catalysis, 2002, 141, 301-308.	1.5	6
103	Novel macroporous vanadium-phosphorus-oxides with three-dimensional arrays of spherical voids. Studies in Surface Science and Catalysis, 2002, 141, 309-316.	1.5	2
104	Quantum Size Effect Silicon Structures via Molecularly Self-Assembled Hybrid Templates. Materials Research Society Symposia Proceedings, 2002, 728, 8401.	0.1	0
105	Macroporous Vanadium Phosphorus Oxide Phases Displaying Three-Dimensional Arrays of Spherical Voids. Chemistry of Materials, 2002, 14, 2670-2675.	6.7	35
106	Mesostructured vanadium-phosphorus-oxide phases. Microporous and Mesoporous Materials, 2002, 55, 297-304.	4.4	22
107	Hierarchical design of mixed metal oxides: novel macroporous VPO phases. Chemical Communications, 2001, , 1438-1439.	4.1	21
108	Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites. Catalysis Science and Technology, 0, , .	4.1	24

0

#	Article	IF	CITATIONS
109	Microporous Crystalline Molecular Sieve Membranes for Molecular Gas Separations: What Is Next?. , 0, , 868-873.		9

110 Catalyst Design Through Dual Templating. , 0, , 295-314.