Marianna Casavola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655556/publications.pdf

Version: 2024-02-01

ı			1684188	2053705	
	5	294	5	5	
	papers	citations	h-index	g-index	
ľ					
	5	5	5	648	
	all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion. ACS Nano, 2019, 13, 6550-6560.	14.6	30
2	Atomic-Scale Investigation of the Structural and Electronic Properties of Cobalt–Iron Bimetallic Fischer–Tropsch Catalysts. ACS Catalysis, 2019, 9, 7998-8011.	11.2	37
3	Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion. ACS Catalysis, 2017, 7, 5121-5128.	11.2	26
4	Fabrication of Fischer–Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5309-5319.	14.9	57
5	Anisotropic Cation Exchange in PbSe/CdSe Core/Shell Nanocrystals of Different Geometry. Chemistry of Materials, 2012, 24, 294-302.	6.7	144