
Igor L Medintz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655440/publications.pdf Version: 2024-02-01

ICOP | MEDINTZ

#	Article	IF	CITATIONS
1	Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots. ACS Measurement Science Au, 2022, 2, 57-66.	1.9	6
2	Packaging of Diisopropyl Fluorophosphatase (DFPase) in Bacterial Outer Membrane Vesicles Protects Its Activity at Extreme Temperature. ACS Biomaterials Science and Engineering, 2022, 8, 493-501.	2.6	4
3	An Investigation into the Resistance of Spherical Nucleic Acids against DNA Enzymatic Degradation. Bioconjugate Chemistry, 2022, 33, 219-225.	1.8	7
4	Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 3404-3417.	4.0	4
5	Synthesis of Substituted Cy5 Phosphoramidite Derivatives and Their Incorporation into Oligonucleotides Using Automated DNA Synthesis. ACS Omega, 2022, 7, 11002-11016.	1.6	11
6	Rapid DNA origami nanostructure detection and classification using the YOLOv5 deep convolutional neural network. Scientific Reports, 2022, 12, 3871.	1.6	16
7	Tuning between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates. Journal of Physical Chemistry Letters, 2022, 13, 2782-2791.	2.1	15
8	Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS ONE, 2022, 17, e0265274.	1.1	8
9	Understanding Self-Assembled Pseudoisocyanine Dye Aggregates in DNA Nanostructures and Their Exciton Relay Transfer Capabilities. Journal of Physical Chemistry B, 2022, 126, 110-122.	1.2	11
10	Determining the Cytosolic Stability of Small DNA Nanostructures <i>In Cellula</i> . Nano Letters, 2022, 22, 5037-5045.	4.5	14
11	Implementing Multi-Enzyme Biocatalytic Systems Using Nanoparticle Scaffolds. Methods in Molecular Biology, 2022, , 227-262.	0.4	1
12	Polyhistidine-Tag-Enabled Conjugation of Quantum Dots and Enzymes to DNA Nanostructures. Methods in Molecular Biology, 2022, , 61-91.	0.4	6
13	A Nanobodyâ€onâ€Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
14	Chemosensors Comes of Age. Chemosensors, 2021, 9, 22.	1.8	0
15	Harnessing the potential of <i>Lactobacillus</i> species for therapeutic delivery at the lumenal-mucosal interface. Future Science OA, 2021, 7, FSO671.	0.9	2
16	Direct and Efficient Conjugation of Quantum Dots to DNA Nanostructures with Peptide-PNA. ACS Nano, 2021, 15, 9101-9110.	7.3	27
17	Excited-State Dynamics of Photoluminescent Gold Nanoclusters and Their Assemblies with Quantum Dot Donors. Journal of Physical Chemistry C, 2021, 125, 12073-12085.	1.5	4
18	Parameters guiding the self-assembly of quantum dots and DNA origami by peptide-PNA. , 2021, , .		0

#	Article	IF	CITATIONS
19	Förster Resonance Energy Transfer in Linear DNA Multifluorophore Photonic Wires: Comparing Dual versus Split Rail Building Block Designs. Advanced Optical Materials, 2021, 9, 2100884.	3.6	5
20	Gold nanoparticles capable of templating entire enzyme cascades and improving production yield through substrate channeling. , 2021, , .		0
21	Exploring the Holliday Junction in a DNA nanostructure for creating excitonic dimers. , 2021, , .		1
22	Enhancing enzymatic performance with nanoparticle immobilization: improved analytical and control capability for synthetic biochemistry. Current Opinion in Biotechnology, 2021, 71, 77-90.	3.3	21
23	Can a DNA Origami Structure Constrain the Position and Orientation of an Attached Dye Molecule?. Journal of Physical Chemistry C, 2021, 125, 1509-1522.	1.5	26
24	Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature. ACS Catalysis, 2021, 11, 627-638.	5.5	19
25	Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks. ACS Nano, 2021, 15, 16452-16468.	7.3	14
26	Understanding Disorder, Vibronic Structure, and Delocalization in Electronically Coupled Dimers on DNA Duplexes. Journal of Physical Chemistry A, 2021, 125, 9632-9644.	1.1	11
27	Enzymatic bioconjugation to nanoparticles. , 2021, , .		0
28	Gold-Nanoparticle-Mediated Depolarization of Membrane Potential Is Dependent on Concentration and Tethering Distance from the Plasma Membrane. Bioconjugate Chemistry, 2020, 31, 567-576.	1.8	8
29	Femtosecond Laser Pulse Excitation of DNA-Labeled Gold Nanoparticles: Establishing a Quantitative Local Nanothermometer for Biological Applications. ACS Nano, 2020, 14, 8570-8583.	7.3	33
30	Affinity Immobilization of Semiconductor Quantum Dots and Metal Nanoparticles on Cellulose Paper Substrates. ACS Applied Materials & Interfaces, 2020, 12, 53462-53474.	4.0	9
31	Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers. Journal of Physical Chemistry B, 2020, 124, 8042-8049.	1.2	25
32	Timeâ€Gated FRET Nanoprobes for Autofluorescenceâ€Free Longâ€Term In Vivo Imaging of Developing Zebrafish. Advanced Materials, 2020, 32, e2003912.	11.1	20
33	Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency. Journal of Physical Chemistry Letters, 2020, 11, 4163-4172.	2.1	34
34	DNA Microsystems for Biodiagnosis. Micromachines, 2020, 11, 445.	1.4	3
35	Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. Nanoscale, 2020, 12, 13719-13730.	2.8	7
36	Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors. Sensors, 2020, 20, 2909.	2.1	9

#	Article	IF	CITATIONS
37	DNA Origami Chromophore Scaffold Exploiting HomoFRET Energy Transport to Create Molecular Photonic Wires. ACS Applied Nano Materials, 2020, 3, 3323-3336.	2.4	24
38	Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS Nano, 2020, 14, 5956-5967.	7.3	24
39	Quantum Dots and Gold Nanoparticles as Scaffolds for Enzymatic Enhancement: Recent Advances and the Influence of Nanoparticle Size. Catalysts, 2020, 10, 83.	1.6	20
40	Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS Nano, 2020, 14, 2659-2677.	7.3	35
41	Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sensors, 2020, 5, 1295-1304.	4.0	21
42	Quantum dots for Förster Resonance Energy Transfer (FRET). TrAC - Trends in Analytical Chemistry, 2020, 125, 115819.	5.8	131
43	A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity. Bioconjugate Chemistry, 2020, 31, 1077-1087.	1.8	15
44	Understanding the fate of DNA nanostructures inside the cell. Journal of Materials Chemistry B, 2020, 8, 6170-6178.	2.9	26
45	Liveâ€Cell Imaging: Timeâ€Gated FRET Nanoprobes for Autofluorescenceâ€Free Longâ€Term In Vivo Imaging of Developing Zebrafish (Adv. Mater. 39/2020). Advanced Materials, 2020, 32, .	11.1	2
46	Toxicity Models: Bayesian Network Resource for Metaâ€Analysis: Cellular Toxicity of Quantum Dots (Small 34/2019). Small, 2019, 15, 1970181.	5.2	2
47	Utilizing the Organizational Power of DNA Scaffolds for New Nanophotonic Applications. Advanced Optical Materials, 2019, 7, 1900562.	3.6	30
48	Nanoparticle Size Influences Localized Enzymatic Enhancement—A Case Study with Phosphotriesterase. Bioconjugate Chemistry, 2019, 30, 2060-2074.	1.8	33
49	Artificial Multienzyme Scaffolds: Pursuing <i>in Vitro</i> Substrate Channeling with an Overview of Current Progress. ACS Catalysis, 2019, 9, 10812-10869.	5.5	115
50	FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nature Methods, 2019, 16, 815-829.	9.0	354
51	Supraparticle Assemblies of Magnetic Nanoparticles and Quantum Dots for Selective Cell Isolation and Counting on a Smartphone-Based Imaging Platform. Analytical Chemistry, 2019, 91, 11963-11971.	3.2	34
52	Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene <i>via</i> salt impregnated inkjet maskless lithography. Nanoscale Horizons, 2019, 4, 735-746.	4.1	43
53	Porous Wood Monoliths Decorated with Platinum Nano-Urchins as Catalysts for Underwater Micro-Vehicle Propulsion via H ₂ O ₂ Decomposition. ACS Applied Nano Materials, 2019, 2, 4143-4149.	2.4	5
54	Bayesian Network Resource for Metaâ€Analysis: Cellular Toxicity of Quantum Dots. Small, 2019, 15, e1900510.	5.2	35

#	Article	IF	CITATIONS
55	Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today, 2019, 27, 73-98.	6.2	102
56	The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 2019, 119, 4819-4880.	23.0	709
57	The Growing Development of DNA Nanostructures for Potential Healthcareâ€Related Applications. Advanced Healthcare Materials, 2019, 8, e1801546.	3.9	60
58	Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors. Small, 2019, 15, 1805384.	5.2	16
59	Nanoparticle–Peptide–Drug Bioconjugates for Unassisted Defeat of Multidrug Resistance in a Model Cancer Cell Line. Bioconjugate Chemistry, 2019, 30, 525-530.	1.8	23
60	Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS Nano, 2019, 13, 13677-13689.	7.3	100
61	Enzymatic Bioremediation of Organophosphate Compounds—Progress and Remaining Challenges. Frontiers in Bioengineering and Biotechnology, 2019, 7, 289.	2.0	81
62	Dendrimeric DNA-Based Nanoscaffolded BRET-FRET Optical Encryption Keys. ACS Applied Nano Materials, 2019, 2, 7459-7465.	2.4	18
63	Exploiting the Feedstock Flexibility of the Emergent Synthetic Biology Chassis Vibrio natriegens for Engineered Natural Product Production. Marine Drugs, 2019, 17, 679.	2.2	29
64	Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler. ACS Nano, 2019, 13, 505-514.	7.3	38
65	Analyzing fidelity and reproducibility of DNA templated plasmonic nanostructures. Nanoscale, 2019, 11, 20693-20706.	2.8	17
66	DNA based molecular logic devices: a review of some ongoing work with multifluorophore FRET systems. , 2019, , .		0
67	Time-gated FRET from terbium labeled antibodies to quantum dot acceptors for broad ADP sensing. , 2019, , .		0
68	Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates. ACS Applied Materials & Interfaces, 2018, 10, 11125-11134.	4.0	112
69	Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement. ACS Omega, 2018, 3, 495-502.	1.6	15
70	Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. ACS Applied Materials & Interfaces, 2018, 10, 15712-15719.	4.0	35
71	Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nature Nanotechnology, 2018, 13, 278-288.	15.6	96
72	Exploring attachment chemistry with FRET in hybrid quantum dot dye-labeled DNA dendrimer composites. Molecular Systems Design and Engineering, 2018, 3, 314-327.	1.7	12

#	Article	IF	CITATIONS
73	Resonance Energy Transfer: Utilizing HomoFRET to Extend DNAâ€Scaffolded Photonic Networks and Increase Lightâ€Harvesting Capability (Advanced Optical Materials 1/2018). Advanced Optical Materials, 2018, 6, 1870005.	3.6	1
74	Utility of PEGylated dithiolane ligands for direct synthesis of water-soluble Au, Ag, Pt, Pd, Cu and AuPt nanoparticles. Chemical Communications, 2018, 54, 1956-1959.	2.2	12
75	Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds. Journal of Physical Chemistry B, 2018, 122, 5020-5029.	1.2	58
76	Utilizing HomoFRET to Extend DNAâ€Scaffolded Photonic Networks and Increase Lightâ€Harvesting Capability. Advanced Optical Materials, 2018, 6, 1700679.	3.6	44
77	Intracellularly Actuated Quantum Dot–Peptide–Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway. Bioconjugate Chemistry, 2018, 29, 136-148.	1.8	44
78	Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir, 2018, 34, 2901-2925.	1.6	48
79	Improving Transfer Efficiency of Molecular Photonic Wires on DNA Scaffolds. , 2018, , .		0
80	Quantum Dots as Förster Resonance Energy Transfer Acceptors of Lanthanides in Time-Resolved Bioassays. ACS Applied Nano Materials, 2018, 1, 3006-3014.	2.4	28
81	A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjugate Chemistry, 2018, 29, 2455-2467.	1.8	23
82	Quantum Dot–Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins. Small, 2018, 14, e1802266.	5.2	36
83	Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sensors, 2018, 3, 1894-2024.	4.0	118
84	Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates. ACS Nano, 2018, 12, 7911-7926.	7.3	52
85	DNA–Nanoparticle Composites Synergistically Enhance Organophosphate Hydrolase Enzymatic Activity. ACS Applied Nano Materials, 2018, 1, 3091-3097.	2.4	14
86	Increased Transfer Efficiency from Molecular Photonic Wires on Solid Substrates and Cryogenic Conditions. Journal of Physical Chemistry Letters, 2018, 9, 3654-3659.	2.1	13
87	Nanoparticle bioconjugate for controlled cellular delivery of doxorubicin. , 2018, , .		0
88	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews, 2017, 117, 536-711.	23.0	575
89	Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. Analytical Chemistry, 2017, 89, 2646-2663.	3.2	70
90	Evaluating Dye-Labeled DNA Dendrimers for Potential Applications in Molecular Biosensing. ACS Sensors, 2017, 2, 401-410.	4.0	31

#	Article	IF	CITATIONS
91	Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors. , 2017, , .		1
92	Cellular Applications of Semiconductor Quantum Dots at the U.S. Naval Research Laboratory: 2006–2016. Reviews in Fluorescence, 2017, , 203-242.	0.5	0
93	Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale, 2017, 9, 5172-5187.	2.8	41
94	Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye. Journal of Physical Chemistry Letters, 2017, 8, 2182-2188.	2.1	34
95	Growing applications for bioassembled Förster resonance energy transfer cascades. Materials Today, 2017, 20, 131-141.	8.3	34
96	Quantum Dot–Peptide–Fullerene Bioconjugates for Visualization of <i>in Vitro</i> and <i>in Vivo</i> Cellular Membrane Potential. ACS Nano, 2017, 11, 5598-5613.	7.3	68
97	Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots. ACS Nano, 2017, 11, 5884-5896.	7.3	39
98	Engineering Immunological Tolerance Using Quantum Dots to Tune the Density of Selfâ€Antigen Display. Advanced Functional Materials, 2017, 27, 1700290.	7.8	67
99	Multiplexed Nucleic Acid Hybridization Assays Using Singleâ€FRETâ€Pair Distanceâ€Tuning. Small, 2017, 13, 1700332.	5.2	58
100	Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Journal of the American Chemical Society, 2017, 139, 363-372.	6.6	64
101	Understanding energy transfer with luminescent gold nanoclusters: a promising new transduction modality for biorelated applications. Journal of Materials Chemistry B, 2017, 5, 7907-7926.	2.9	56
102	Purple-, Blue-, and Green-Emitting Multishell Alloyed Quantum Dots: Synthesis, Characterization, and Application for Ratiometric Extracellular pH Sensing. Chemistry of Materials, 2017, 29, 7330-7344.	3.2	74
103	Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA. Journal of Chemical Physics, 2017, 147, 055101.	1.2	17
104	Kinetic enhancement in high-activity enzyme complexes attached to nanoparticles. Nanoscale Horizons, 2017, 2, 241-252.	4.1	21
105	Time-Gated FRET and DNA-Based Photonic Molecular Logic Gates: AND, OR, NAND, and NOR. ACS Sensors, 2017, 2, 1205-1214.	4.0	58
106	Lifting the Spectral Crosstalk in Multifluorophore Assemblies. Journal of Physical Chemistry C, 2017, 121, 26226-26232.	1.5	15
107	Enhanced enzymatic activity from phosphotriesterase trimer gold nanoparticle bioconjugates for pesticide detection. Analyst, The, 2017, 142, 3261-3271.	1.7	33
108	Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. Nanoscale, 2017, 9, 10447-10464.	2.8	28

#	Article	IF	CITATIONS
109	Quantum Dot Encapsulation Using a Peptide-Modified Tetrahedral DNA Cage. Chemistry of Materials, 2017, 29, 5762-5766.	3.2	34
110	Targeting and delivery of therapeutic enzymes. Therapeutic Delivery, 2017, 8, 577-595.	1.2	49
111	Waterâ€Soluble, Thermostable, Photomodulated Colorâ€Switching Quantum Dots. Chemistry - A European Journal, 2017, 23, 263-267.	1.7	36
112	Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures. Nano Futures, 2017, 1, 011002.	1.0	22
113	Dendrimeric DNA Nanostructures as Scaffolds for Efficient Bidirectional BRET–FRET Cascades. Advanced Optical Materials, 2017, 5, 1700181.	3.6	27
114	DNA scaffold nanostructures for efficient and directional propagation of light harvesting cascades. , 2017, , .		0
115	Extending DNAâ€Based Molecular Photonic Wires with Homogeneous Förster Resonance Energy Transfer. Advanced Optical Materials, 2016, 4, 399-412.	3.6	43
116	Expanding molecular logic capabilities in DNA-scaffolded multiFRET triads. RSC Advances, 2016, 6, 97587-97598.	1.7	23
117	Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Scientific Reports, 2016, 6, 24866.	1.6	88
118	Using DNA nanostructures to harvest light and create energy transfer and harvesting systems. , 2016, ,		2
119	Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular–Nanoparticle Interface. Journal of Physical Chemistry Letters, 2016, 7, 2139-2150.	2.1	41
120	3,4-Dihydroxyphenylalanine Peptides as Nonperturbative Quantum Dot Sensors of Aminopeptidase. ACS Nano, 2016, 10, 6090-6099.	7.3	23
121	A DNAzyme-mediated logic gate for programming molecular capture and release on DNA origami. Chemical Communications, 2016, 52, 8369-8372.	2.2	38
122	Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
123	Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 2016, 19, 464-477.	8.3	67
124	Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 56-65.	2.1	16
125	Interesting developments at the nanoparticle–protein interface: implications for next generation drug delivery. Therapeutic Delivery, 2016, 7, 513-516.	1.2	4
126	Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism. Scientific Reports, 2016, 6, 35538.	1.6	66

#	Article	IF	CITATIONS
127	Synthesis and Characterization of PEGylated Luminescent Gold Nanoclusters Doped with Silver and Other Metals. Chemistry of Materials, 2016, 28, 8676-8688.	3.2	54
128	Quantum dotâ€mediated delivery of siRNA to inhibit sphingomyelinase activities in brainâ€derived cells. Journal of Neurochemistry, 2016, 139, 872-885.	2.1	19
129	Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances, 2016, 2, e1600265.	4.7	56
130	Platinum Nanoparticle Decorated SiO ₂ Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion. ACS Applied Materials & Interfaces, 2016, 8, 30941-30947.	4.0	18
131	Understanding the Enhanced Kinetics of Enzyme-Quantum Dot Constructs. MRS Advances, 2016, 1, 3831-3836.	0.5	2
132	The influence of cell penetrating peptide branching on cellular uptake of QDs. , 2016, , .		1
133	Quantum dot based enzyme activity sensors present deviations from Michaelis-Menten kinetic model. , 2016, , .		0
134	Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nature Nanotechnology, 2016, 11, 479-486.	15.6	393
135	FRET from Multiple Pathways in Fluorophore-Labeled DNA. ACS Photonics, 2016, 3, 659-669.	3.2	63
136	Improving the targeting of therapeutics with single-domain antibodies. Expert Opinion on Drug Delivery, 2016, 13, 561-570.	2.4	9
137	Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes. Sensors, 2015, 15, 14766-14787.	2.1	29
138	Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly. Sensors, 2015, 15, 30457-30468.	2.1	12
139	Quantum dot display enhances activity of a phosphotriesterase trimer. Chemical Communications, 2015, 51, 6403-6406.	2.2	38
140	Increasing the activity of immobilized enzymes with nanoparticle conjugation. Current Opinion in Biotechnology, 2015, 34, 242-250.	3.3	228
141	Time-Gated DNA Photonic Wires with Förster Resonance Energy Transfer Cascades Initiated by a Luminescent Terbium Donor. ACS Photonics, 2015, 2, 639-652.	3.2	35
142	Intracellular FRET-based probes: a review. Methods and Applications in Fluorescence, 2015, 3, 042006.	1.1	80
143	Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 1-24.	5.6	52
144	Delivery and Tracking of Quantum Dot Peptide Bioconjugates in an Intact Developing Avian Brain. ACS Chemical Neuroscience, 2015, 6, 494-504.	1.7	67

#	Article	IF	CITATIONS
145	Probing the Enzymatic Activity of Alkaline Phosphatase within Quantum Dot Bioconjugates. Journal of Physical Chemistry C, 2015, 119, 2208-2221.	1.5	62
146	Enhancing enzymatic efficiency by attachment to semiconductor nanoparticles for biosensor applications. , 2015, , .		0
147	Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency. ACS Nano, 2015, 9, 8491-8503.	7.3	67
148	High Aspect Ratio Carbon Nanotube Membranes Decorated with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion <i>via</i> H ₂ O ₂ Decomposition. ACS Nano, 2015, 9, 7791-7803.	7.3	51
149	Membrane-targeting peptides for nanoparticle-facilitated cellular imaging and analysis. Proceedings of SPIE, 2015, , .	0.8	1
150	An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Nanoscale, 2015, 7, 7603-7614.	2.8	42
151	Enzymatic bioconjugation of nanoparticles: developing specificity and control. Current Opinion in Biotechnology, 2015, 34, 232-241.	3.3	40
152	Peptides for Specifically Targeting Nanoparticles to Cellular Organelles: <i>Quo Vadis</i> ?. Accounts of Chemical Research, 2015, 48, 1380-1390.	7.6	118
153	Combining semiconductor quantum dots and bioscaffolds into nanoscale energy transfer devices. Applied Optics, 2015, 54, F85.	2.1	3
154	Chemoenzymatic Sensitization of DNA Photonic Wires Mediated through Quantum Dot Energy Transfer Relays. Chemistry of Materials, 2015, 27, 6490-6494.	3.2	52
155	Examining the Polyproline Nanoscopic Ruler in the Context of Quantum Dots. Chemistry of Materials, 2015, 27, 6222-6237.	3.2	30
156	Bacterial Nanobioreactors–Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles. ACS Applied Materials & Interfaces, 2015, 7, 24963-24972.	4.0	106
157	The Role of Negative Charge in the Delivery of Quantum Dots to Neurons. ASN Neuro, 2015, 7, 175909141559238.	1.5	39
158	Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Therapeutic Delivery, 2015, 6, 873-887.	1.2	30
159	Editorial overview: Nanobiotechnology: A time-stamped cross-sectional analysis. Current Opinion in Biotechnology, 2015, 34, vii-ix.	3.3	Ο
160	Modified kinetics of enzymes interacting with nanoparticles. , 2015, , .		1
161	Probing the kinetics of quantum dot-based proteolytic sensors. Analytical and Bioanalytical Chemistry, 2015, 407, 7307-7318.	1.9	37
162	Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs. Analytical Chemistry, 2015, 87, 11923-11931.	3.2	17

#	Article	IF	CITATIONS
163	Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 131-151.	3.3	36
164	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	1.5	130
165	Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nature Communications, 2014, 5, 5615.	5.8	142
166	Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes. Journal of Physical Chemistry B, 2014, 118, 14555-14565.	1.2	55
167	Extending FRET cascades on linear DNA photonic wires. Chemical Communications, 2014, 50, 7246.	2.2	64
168	Monitoring enzyme kinetic behavior of enzyme-quantum dot bioconjugates. Proceedings of SPIE, 2014, ,	0.8	0
169	Controlling the intracellular fate of nano-bioconjugates: pathways for realizing nanoparticle-mediated theranostics. Proceedings of SPIE, 2014, , .	0.8	0
170	Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coordination Chemistry Reviews, 2014, 263-264, 65-85.	9.5	159
171	Understanding enzymatic acceleration at nanoparticle interfaces: Approaches and challenges. Nano Today, 2014, 9, 102-131.	6.2	187
172	Peptide-Functionalized Quantum Dot Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 115-126.	1.9	11
173	Recent progress in the bioconjugation of quantum dots. Coordination Chemistry Reviews, 2014, 263-264, 101-137.	9.5	190
174	Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits. ACS Applied Materials & Interfaces, 2014, 6, 3771-3778.	4.0	98
175	Quantum dots as platforms for charge transfer-based biosensing: challenges and opportunities. Journal of Materials Chemistry B, 2014, 2, 7816-7827.	2.9	39
176	Platinum-Paper Micromotors: An Urchin-like Nanohybrid Catalyst for Green Monopropellant Bubble-Thrusters. ACS Applied Materials & Interfaces, 2014, 6, 17837-17847.	4.0	40
177	Quantum dot–based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. Nature Methods, 2014, 11, 1237-1241.	9.0	70
178	A triangular three-dye DNA switch capable of reconfigurable molecular logic. RSC Advances, 2014, 4, 48860-48871.	1.7	35
179	Three-Dimensional Solution-Phase Förster Resonance Energy Transfer Analysis of Nanomolar Quantum Dot Bioconjugates with Subnanometer Resolution. Chemistry of Materials, 2014, 26, 4299-4312.	3.2	37
180	A New Family of Pyridine-Appended Multidentate Polymers As Hydrophilic Surface Ligands for Preparing Stable Biocompatible Quantum Dots. Chemistry of Materials, 2014, 26, 5327-5344.	3.2	94

#	Article	IF	CITATIONS
181	Detecting Kallikrein Proteolytic Activity with Peptide-Quantum Dot Nanosensors. ACS Applied Materials & Interfaces, 2014, 6, 11529-11535.	4.0	27
182	Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano, 2014, 8, 6986-6997.	7.3	57
183	Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes. Journal of Physical Chemistry C, 2014, 118, 9239-9250.	1.5	14
184	Quantum Dots as a Platform Nanomaterial for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 621-662.	0.1	0
185	Quantitative Measurement of Proteolytic Rates with Quantum Dot-Peptide Substrate Conjugates and FŶrster Resonance Energy Transfer. Methods in Molecular Biology, 2014, 1199, 215-239.	0.4	16
186	Evaluation of diverse peptidyl motifs for cellular delivery of semiconductor quantum dots. Analytical and Bioanalytical Chemistry, 2013, 405, 6145-6154.	1.9	26
187	Controlled actuation of therapeutic nanoparticles: moving beyond passive delivery modalities. Therapeutic Delivery, 2013, 4, 127-129.	1.2	7
188	Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires. ACS Nano, 2013, 7, 7101-7118.	7.3	61
189	Peptide-mediated cellular delivery of semiconductor quantum dots. , 2013, , .		0
190	Cytotoxicity of Quantum Dots Used for <i>In Vitro</i> Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry, 2013, 24, 1570-1583.	1.8	113
191	Recent development of dihydrolipoic acid appended ligands for robust and biocompatible quantum dots. Proceedings of SPIE, 2013, , .	0.8	1
192	Colloidal Stability of Gold Nanoparticles Coated with Multithiol-Poly(ethylene glycol) Ligands: Importance of Structural Constraints of the Sulfur Anchoring Groups. Journal of Physical Chemistry C, 2013, 117, 18947-18956.	1.5	59
193	Competition between Förster Resonance Energy Transfer and Electron Transfer in Stoichiometrically Assembled Semiconductor Quantum Dot–Fullerene Conjugates. ACS Nano, 2013, 7, 9489-9505.	7.3	62
194	PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to One―and Twoâ€Photon Cellular Imaging. Particle and Particle Systems Characterization, 2013, 30, 453-466.	1.2	108
195	Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays. Nanoscale, 2013, 5, 12156.	2.8	86
196	Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chemical Communications, 2013, 49, 7878.	2.2	37
197	TEM imaging of unstained DNA nanostructures using suspended graphene. Soft Matter, 2013, 9, 1414-1417.	1.2	15
198	Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Analytica Chimica Acta, 2013, 786, 132-138.	2.6	58

#	Article	IF	CITATIONS
199	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	23.0	1,173
200	Selecting Improved Peptidyl Motifs for Cytosolic Delivery of Disparate Protein and Nanoparticle Materials. ACS Nano, 2013, 7, 3778-3796.	7.3	124
201	Optimizing Protein Coordination to Quantum Dots with Designer Peptidyl Linkers. Bioconjugate Chemistry, 2013, 24, 269-281.	1.8	45
202	Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy, 2013, 67, 215-252.	1.2	499
203	Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer. , 2013, , .		2
204	Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery. Therapeutic Delivery, 2013, 4, 1411-1429.	1.2	19
205	Chemosensors — Welcome to a New Open Access Journal Intended to Cover All Aspects of Chemical Sensing. Chemosensors, 2013, 1, 1-2.	1.8	1
206	Synthesizing and Modifying Peptides for Chemoselective Ligation and Assembly into Quantum Dot-Peptide Bioconjugates. Methods in Molecular Biology, 2013, 1025, 47-73.	0.4	29
207	Further progress in cytosolic cellular delivery of quantum dots. , 2012, , .		0
208	Nanoparticle Targeting to Neurons in a Rat Hippocampal Slice Culture Model. ASN Neuro, 2012, 4, AN20120042.	1.5	61
209	Assembly of a Concentric Förster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing. ACS Nano, 2012, 6, 11044-11058.	7.3	115
210	Multimodal Characterization of a Linear DNA-Based Nanostructure. ACS Nano, 2012, 6, 1026-1043.	7.3	31
211	Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated FA¶rster Resonance Energy Transfer Relay. Analytical Chemistry, 2012, 84, 10136-10146.	3.2	97
212	Active cellular sensing with quantum dots: Transitioning from research tool to reality; a review. Analytica Chimica Acta, 2012, 750, 63-81.	2.6	71
213	Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly. ACS Nano, 2012, 6, 5330-5347.	7.3	55
214	Quantum Dots and Fluorescent Protein FRET-Based Biosensors. Advances in Experimental Medicine and Biology, 2012, 733, 63-74.	0.8	25
215	Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing. Journal of the American Chemical Society, 2012, 134, 1876-1891.	6.6	234
216	Proteolytic Activity at Quantum Dot-Conjugates: Kinetic Analysis Reveals Enhanced Enzyme Activity and Localized Interfacial "Hopping― Nano Letters, 2012, 12, 3793-3802.	4.5	122

#	Article	IF	CITATIONS
217	Fluorescence in Nanobiotechnology: Sophisticated Fluorophores for Novel Applications. Small, 2012, 8, 2297-2326.	5.2	180
218	Fluorescence: Fluorescence in Nanobiotechnology: Sophisticated Fluorophores for Novel Applications (Small 15/2012). Small, 2012, 8, 2290-2290.	5.2	4
219	Elaborate Nanoparticleâ€Based Traps for Catching Cytosolic Players in the Act. ChemBioChem, 2012, 13, 30-33.	1.3	4
220	Multifunctional Compact Zwitterionic Ligands for Preparing Robust Biocompatible Semiconductor Quantum Dots and Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 9480-9496.	6.6	276
221	Monitoring Botulinum Neurotoxin A Activity with Peptide-Functionalized Quantum Dot Resonance Energy Transfer Sensors. ACS Nano, 2011, 5, 2687-2699.	7.3	119
222	Cellular Uptake and Fate of PEGylated Gold Nanoparticles Is Dependent on Both Cell-Penetration Peptides and Particle Size. ACS Nano, 2011, 5, 6434-6448.	7.3	381
223	Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Analytical Chemistry, 2011, 83, 8826-8837.	3.2	318
224	Spatiotemporal Multicolor Labeling of Individual Cells Using Peptide-Functionalized Quantum Dots and Mixed Delivery Techniques. Journal of the American Chemical Society, 2011, 133, 10482-10489.	6.6	115
225	Reactive Semiconductor Nanocrystals for Chemoselective Biolabeling and Multiplexed Analysis. ACS Nano, 2011, 5, 5579-5593.	7.3	80
226	Multivalent Conjugation of Peptides, Proteins, and DNA to Semiconductor Quantum Dots. Methods in Molecular Biology, 2011, 726, 95-110.	0.4	7
227	The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chemistry, 2011, 22, 825-858.	1.8	444
228	Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Analytical Chemistry, 2011, 83, 4453-4488.	3.2	430
229	Singleâ€Molecule Colocalization Studies Shed Light on the Idea of Fully Emitting versus Dark Single Quantum Dots. Small, 2011, 7, 2101-2108.	5.2	18
230	Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats. Sensors, 2011, 11, 7879-7891.	2.1	23
231	Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties. Sensors, 2011, 11, 9667-9684.	2.1	36
232	Multidentate Poly(ethylene glycol) Ligands Provide Colloidal Stability to Semiconductor and Metallic Nanocrystals in Extreme Conditions. Journal of the American Chemical Society, 2010, 132, 9804-9813.	6.6	187
233	Quantum dots: Small 4/2010. Small, 2010, 6, NA-NA.	5.2	0
234	Polyvalent Display and Packing of Peptides and Proteins on Semiconductor Quantum Dots: Predicted Versus Experimental Results. Small, 2010, 6, 555-564.	5.2	109

#	Article	IF	CITATIONS
235	Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials, 2010, 9, 676-684.	13.3	433
236	Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery, 2010, 1, 411-433.	1.2	87
237	Surface Ligand Effects on Metal-Affinity Coordination to Quantum Dots: Implications for Nanoprobe Self-Assembly. Bioconjugate Chemistry, 2010, 21, 1160-1170.	1.8	91
238	Combining Chemoselective Ligation with Polyhistidine-Driven Self-Assembly for the Modular Display of Biomolecules on Quantum Dots. ACS Nano, 2010, 4, 267-278.	7.3	91
239	Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. Journal of the American Chemical Society, 2010, 132, 18177-18190.	6.6	128
240	Quantum Dot Peptide Biosensors for Monitoring Caspase 3 Proteolysis and Calcium Ions. ACS Nano, 2010, 4, 5487-5497.	7.3	151
241	Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integrative Biology (United Kingdom), 2010, 2, 265.	0.6	124
242	Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture. ACS Nano, 2010, 4, 7253-7266.	7.3	141
243	Detection of HIV-1 Specific Monoclonal Antibodies Using Enhancement of Dye-Labeled Antigenic Peptides. Bioconjugate Chemistry, 2010, 21, 393-398.	1.8	15
244	Rapid Covalent Ligation of Fluorescent Peptides to Water Solubilized Quantum Dots. Journal of the American Chemical Society, 2010, 132, 10027-10033.	6.6	78
245	Modification of Poly(ethylene glycol)-Capped Quantum Dots with Nickel Nitrilotriacetic Acid and Self-Assembly with Histidine-Tagged Proteins. Journal of Physical Chemistry C, 2010, 114, 13526-13531.	1.5	43
246	Intracellular Bioconjugation of Targeted Proteins with Semiconductor Quantum Dots. Journal of the American Chemical Society, 2010, 132, 5975-5977.	6.6	92
247	Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 1091-1112.	2.4	94
248	Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sensors and Actuators B: Chemical, 2009, 139, 13-21.	4.0	91
249	Improved peptidyl linkers for self-assembly of semiconductor quantum dot bioconjugates. Nano Research, 2009, 2, 121-129.	5.8	39
250	Delivering quantum dots into cells: strategies, progress and remaining issues. Analytical and Bioanalytical Chemistry, 2009, 393, 1091-1105.	1.9	312
251	Interfacing biology with nanomaterials. Materials Today, 2009, 12, 6-7.	8.3	5
252	Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nature Protocols, 2009, 4, 412-423.	5.5	190

#	Article	IF	CITATIONS
253	Multiplex Charge-Transfer Interactions between Quantum Dots and Peptide-Bridged Ruthenium Complexes. Analytical Chemistry, 2009, 81, 4831-4839.	3.2	70
254	Sensing Caspase 3 Activity with Quantum Dotâ [~] Fluorescent Protein Assemblies. Journal of the American Chemical Society, 2009, 131, 3828-3829.	6.6	280
255	Quantum dot-based resonance energy transfer and its growing application in biology. Physical Chemistry Chemical Physics, 2009, 11, 17-45.	1.3	537
256	Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors. Journal of Physical Chemistry C, 2009, 113, 18552-18561.	1.5	109
257	Sensors for detecting biological agents. Materials Today, 2008, 11, 38-49.	8.3	87
258	Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. Journal of Materials Chemistry, 2008, 18, 4949.	6.7	205
259	Intracellular Delivery of Quantum Dotâ~'Protein Cargos Mediated by Cell Penetrating Peptides. Bioconjugate Chemistry, 2008, 19, 1785-1795.	1.8	155
260	Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge. Journal of the American Chemical Society, 2008, 130, 16745-16756.	6.6	115
261	Rapid Determination of Monozygous Twinning with a Microfabricated Capillary Array Electrophoresis Genetic-Analysis Device1. Clinical Chemistry, 2008, 54, 1080-1084.	1.5	8
262	Monitoring of Enzymatic Proteolysis Using Self-Assembled Quantum Dot-Protein Substrate Sensors. Journal of Sensors, 2008, 2008, 1-10.	0.6	10
263	Potential clinical applications of quantum dots. International Journal of Nanomedicine, 2008, 3, 151.	3.3	152
264	Incorporation of18Oxygen into Peptide Mixtures and Analysis with Multiâ€Đimensional Chromatography and Massâ€Spectroscopy. Analytical Letters, 2007, 40, 1864-1878.	1.0	7
265	Enhancing the Biological Stability and Functionalities of Quantum Dots via Compact Multifunctional Ligands. Materials Research Society Symposia Proceedings, 2007, 1019, .	0.1	1
266	Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands. Journal of the American Chemical Society, 2007, 129, 13987-13996.	6.6	486
267	A Reactive Peptidic Linker for Self-Assembling Hybrid Quantum Dotâ^'DNA Bioconjugates. Nano Letters, 2007, 7, 1741-1748.	4.5	189
268	Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation. Molecular BioSystems, 2007, 3, 623.	2.9	6
269	Microfabricated Two-Dimensional Electrophoresis Device for Differential Protein Expression Profiling. Analytical Chemistry, 2007, 79, 7360-7366.	3.2	62
270	Kinetics of Metal-Affinity Driven Self-Assembly between Proteins or Peptides and CdSeâ^'ZnS Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 11528-11538.	1.5	257

#	Article	IF	CITATIONS
271	On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles. Nano Letters, 2007, 7, 3157-3164.	4.5	480
272	Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2006, 128, 15324-15331.	6.6	272
273	Self-Assembled Quantum Dotâ^'Peptide Bioconjugates for Selective Intracellular Delivery. Bioconjugate Chemistry, 2006, 17, 920-927.	1.8	246
274	Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 20308-20316.	1.2	280
275	Designer Variable Repeat Length Polypeptides as Scaffolds for Surface Immobilization of Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 10683-10690.	1.2	81
276	Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nature Materials, 2006, 5, 581-589.	13.3	537
277	Universal tools for biomolecular attachment to surfaces. Nature Materials, 2006, 5, 842-842.	13.3	93
278	Maltose-binding protein: a versatile platform for prototyping biosensing. Current Opinion in Biotechnology, 2006, 17, 17-27.	3.3	115
279	Biosensing with Luminescent Semiconductor Quantum Dots. Sensors, 2006, 6, 925-953.	2.1	381
280	Luminescent quantum dots in immunoassays. Analytical and Bioanalytical Chemistry, 2006, 384, 560-563.	1.9	106
281	Recent progress in developing FRET-based intracellular sensors for the detection of small molecule nutrients and ligands. Trends in Biotechnology, 2006, 24, 539-542.	4.9	45
282	Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angewandte Chemie - International Edition, 2006, 45, 4562-4589.	7.2	1,383
283	Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores. ChemPhysChem, 2006, 7, 47-57.	1.0	537
284	Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies. Physical Review B, 2006, 73, .	1.1	60
285	Self-assembled luminescent CdSe–ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Analytica Chimica Acta, 2005, 534, 63-67.	2.6	96
286	Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4, 435-446.	13.3	5,774
287	Self-Assembled TNT Biosensor Based on Modular Multifunctional Surface-Tethered Components. Analytical Chemistry, 2005, 77, 365-372.	3.2	48
288	Can Luminescent Quantum Dots Be Efficient Energy Acceptors with Organic Dye Donors?. Journal of the American Chemical Society, 2005, 127, 1242-1250.	6.6	269

#	Article	IF	CITATIONS
289	Decoration of Discretely Immobilized Cowpea Mosaic Virus with Luminescent Quantum Dots. Langmuir, 2005, 21, 5501-5510.	1.6	103
290	A Hybrid Quantum Dotâ^'Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Journal of the American Chemical Society, 2005, 127, 6744-6751.	6.6	562
291	Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores. Journal of the American Chemical Society, 2005, 127, 3870-3878.	6.6	534
292	Quantum Dot-Based Multiplexed Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2005, 127, 18212-18221.	6.6	232
293	Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. Journal of the American Chemical Society, 2004, 126, 301-310.	6.6	1,255
294	Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry, 2004, 76, 684-688.	3.2	652
295	Use of a Cyanine Dye as a Reporter Probe in Reagentless Maltose Sensors Based onE. coliMaltose Binding Protein. Analytical Letters, 2004, 37, 191-202.	1.0	14
296	Surface-Immobilized Self-Assembled Protein-Based Quantum Dot Nanoassemblies. Langmuir, 2004, 20, 7720-7728.	1.6	85
297	Reversible Modulation of Quantum Dot Photoluminescence Using a Protein- Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor. Journal of the American Chemical Society, 2004, 126, 30-31.	6.6	253
298	General Strategy for Biosensor Design and Construction Employing Multifunctional Surface-Tethered Components. Analytical Chemistry, 2004, 76, 5620-5629.	3.2	37
299	Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2003, 2, 630-638.	13.3	1,541
300	A Fluorescence Resonance Energy Transfer Sensor Based on Maltose Binding Protein. Bioconjugate Chemistry, 2003, 14, 909-918.	1.8	111
301	Design of Water-Soluble Quantum Dots with Novel Surface Ligands for Biological Applications. Materials Research Society Symposia Proceedings, 2003, 789, 312.	0.1	2
302	Towards the Design and Implementation of Surface Tethered Quantum Dot-Based Nanosensors. Materials Research Society Symposia Proceedings, 2003, 789, 306.	0.1	0
303	Quantum Dot Bioconjugates as Energy Donors in Fluorescence Resonance Energy Transfer Assays. Materials Research Society Symposia Proceedings, 2003, 773, 791.	0.1	0
304	Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis. Analytical Chemistry, 2002, 74, 5076-5083.	3.2	271
305	Fluorescence labeling methods for microchannel plate capillary electrophoresis DNA sizing. Journal of Capillary Electrophoresis and Microchip Technology, 2002, 7, 43-9.	0.0	0
306	Energy-Transfer Cassette Labeling for Capillary Array Electrophoresis Short Tandem Repeat DNA Fragment Sizing. Bioconjugate Chemistry, 2001, 12, 493-500.	1.8	22

#	Article	lF	CITATIONS
307	Genotyping Energy-Transfer-Cassette-labeled Short-Tandem-Repeat Amplicons with Capillary Array Electrophoresis Microchannel Plates. Clinical Chemistry, 2001, 47, 1614-1621.	1.5	41
308	Energy Transfer Cassettes for Facile Labeling of Sequencing and PCR Primers. Analytical Biochemistry, 2001, 292, 188-197.	1.1	37
309	High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis, 2001, 22, 3845-3856.	1.3	90
310	Microfabricated capillary array electrophoresis DNA analysis systems. Journal of Chromatography A, 2001, 924, 265-270.	1.8	52
311	High speed single nucleotide polymorphism typing of a hereditary haemochromatosis mutation with capillary array electrophoresis microplates. Electrophoresis, 2000, 21, 2352-2358.	1.3	50
312	A PEST-like Sequence in the N-Terminal Cytoplasmic Domain ofSaccharomycesMaltose Permease Is Required for Glucose-Induced Proteolysis and Rapid Inactivation of Transport Activityâ€. Biochemistry, 2000, 39, 4518-4526.	1.2	51
313	High speed single nucleotide polymorphism typing of a hereditary haemochromatosis mutation with capillary array electrophoresis microplates. Electrophoresis, 2000, 21, 2352-2358.	1.3	3
314	A Nanobodyâ€onâ€Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie, 0, , .	1.6	1