Moreno Di Marco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655412/publications.pdf

Version: 2024-02-01

68 7,074 papers citations

39 68
h-index g-index

79 79
all docs docs citations

79 times ranked 9582 citing authors

#	Article	IF	Citations
1	Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 2017, 8, 1124.	5.8	645
2	Targeting Global Protected Area Expansion for Imperiled Biodiversity. PLoS Biology, 2014, 12, e1001891.	2.6	430
3	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
4	Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Current Biology, 2016, 26, 2929-2934.	1.8	359
5	Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7635-7640.	3.3	317
6	Imputation of missing data in lifeâ€history trait datasets: which approach performs the best?. Methods in Ecology and Evolution, 2014, 5, 961-970.	2.2	258
7	Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2633-2641.	1.8	240
8	Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3888-3892.	3.3	223
9	Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation, 2017, 10, 32-42.	1.0	192
10	Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 2015, 187, 103-111.	1.9	189
11	Bias in protectedâ€area location and its effects on longâ€ŧerm aspirations of biodiversity conventions. Conservation Biology, 2018, 32, 127-134.	2.4	187
12	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	2.8	182
13	Changes in human footprint drive changes in species extinction risk. Nature Communications, 2018, 9, 4621.	5.8	173
14	Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Frontiers in Ecology and the Environment, 2019, 17, 259-264.	1.9	173
15	Global mismatch of policy and research on drivers of biodiversity loss. Nature Ecology and Evolution, 2018, 2, 1071-1074.	3.4	152
16	Persistent Disparities between Recent Rates of Habitat Conversion and Protection and Implications for Future Global Conservation Targets. Conservation Letters, 2016, 9, 413-421.	2.8	148
17	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
18	Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature, 2019, 573, 582-585.	13.7	144

#	Article	IF	CITATIONS
19	Generation length for mammals. Nature Conservation, 0, 5, 89-94.	0.0	144
20	Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth, 2020, 3, 371-382.	3.6	140
21	Human pressures predict species' geographic range size better than biological traits. Global Change Biology, 2015, 21, 2169-2178.	4.2	124
22	A Retrospective Evaluation of the Global Decline of Carnivores and Ungulates. Conservation Biology, 2014, 28, 1109-1118.	2.4	109
23	Update or Outdate: Longâ€√erm Viability of the IUCN Red List. Conservation Letters, 2014, 7, 126-130.	2.8	96
24	Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biology, 2019, 17, e3000158.	2.6	95
25	Toward quantification of the impact of 21stâ€century deforestation on the extinction risk of terrestrial vertebrates. Conservation Biology, 2016, 30, 1070-1079.	2.4	88
26	Threat to the point: improving the value of comparative extinction risk analysis for conservation action. Global Change Biology, 2014, 20, 483-494.	4.2	86
27	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	6.0	85
28	Formulating Smart Commitments on Biodiversity: Lessons from the Aichi Targets. Conservation Letters, 2016, 9, 457-468.	2.8	78
29	Projecting impacts of global climate and landâ€use scenarios on plant biodiversity using compositionalâ€turnover modelling. Global Change Biology, 2019, 25, 2763-2778.	4.2	76
30	Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications, 2020, 11, 2840.	5.8	68
31	Limitations and trade $\hat{a} \in \hat{o}$ ffs in the use of species distribution maps for protected area planning. Journal of Applied Ecology, 2017, 54, 402-411.	1.9	67
32	Assessing the Cost of Global Biodiversity and Conservation Knowledge. PLoS ONE, 2016, 11, e0160640.	1.1	65
33	Reconciling global priorities for conserving biodiversity habitat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9906-9911.	3.3	64
34	Effects of Errors and Gaps in Spatial Data Sets on Assessment of Conservation Progress. Conservation Biology, 2013, 27, 1000-1010.	2.4	61
35	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
36	Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.	4.2	58

#	Article	IF	CITATIONS
37	Restoration priorities to achieve the global protected area target. Conservation Letters, 2019, 12, e12646.	2.8	55
38	Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2670-2680.	1.8	54
39	Protected areas are now the last strongholds for many imperiled mammal species. Conservation Letters, 2020, 13, e12748.	2.8	52
40	COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. Ecology, 2021, 102, e03344.	1.5	50
41	Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130198.	1.8	49
42	The extent and predictability of the biodiversity–carbon correlation. Ecology Letters, 2018, 21, 365-375.	3.0	46
43	Synergies between the key biodiversity area and systematic conservation planning approaches. Conservation Letters, 2019, 12, e12625.	2.8	46
44	Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conservation Biology, 2020, 34, 1452-1462.	2.4	40
45	A novel approach for global mammal extinction risk reduction. Conservation Letters, 2012, 5, 134-141.	2.8	37
46	Shifting baseline in macroecology? Unravelling the influence of human impact on mammalian body mass. Diversity and Distributions, 2017, 23, 640-649.	1.9	37
47	Synergies and tradeâ€offs in achieving global biodiversity targets. Conservation Biology, 2016, 30, 189-195.	2.4	36
48	Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biological Conservation, 2013, 165, 203-211.	1.9	35
49	Global Biodiversity Targets Require Both Sufficiency and Efficiency. Conservation Letters, 2016, 9, 395-397.	2.8	34
50	Historical drivers of extinction risk: using past evidence to direct future monitoring. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150928.	1.2	30
51	Incorporating spatial population structure in gap analysis reveals inequitable assessments of species protection. Diversity and Distributions, 2014, 20, 698-707.	1.9	25
52	Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.	2.4	24
53	Intense human pressure is widespread across terrestrial vertebrate ranges. Global Ecology and Conservation, 2020, 21, e00882.	1.0	23
54	To Achieve Big Wins for Terrestrial Conservation, Prioritize Protection of Ecoregions Closest to Meeting Targets. One Earth, 2020, 2, 479-486.	3.6	21

#	Article	IF	CITATIONS
55	Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nature Communications, 2022, 13, 595.	5.8	21
56	Drivers of change in the realised climatic niche of terrestrial mammals. Ecography, 2021, 44, 1180-1190.	2.1	18
57	The interface between Macroecology and Conservation: existing links and untapped opportunities. Frontiers of Biogeography, 2021, 13, .	0.8	18
58	Measuring the surrogacy potential of charismatic megafauna species across taxonomic, phylogenetic and functional diversity on a megadiverse island. Journal of Applied Ecology, 2019, 56, 1220-1231.	1.9	17
59	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	1.8	16
60	The role of habitat fragmentation in Pleistocene megafauna extinction in Eurasia. Ecography, 2021, 44, 1619-1630.	2.1	13
61	Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology, 2022, 36, .	2.4	13
62	An Evaluation of Marine Important Bird and Biodiversity Areas in the Context of Spatial Conservation Prioritization. Conservation Letters, 2018, 11, e12399.	2.8	8
63	Drivers and trends in the extinction risk of New Zealand's endemic birds. Biological Conservation, 2020, 249, 108730.	1.9	8
64	Identifying science-policy consensus regions of high biodiversity value and institutional recognition. Global Ecology and Conservation, 2021, 32, e01938.	1.0	7
65	Reptile research shows new avenues and old challenges for extinction risk modelling. PLoS Biology, 2022, 20, e3001719.	2.6	6
66	Geographic distribution ranges of terrestrial mammal species in the 1970s. Ecology, 2019, 100, e02747.	1.5	5
67	Climatic tolerance or geographic breadth: what are we measuring?. Global Change Biology, 2016, 22, 972-973.	4.2	4
68	Corrigendum to "Global correlates of emerging zoonoses: Anthropogenic, environmental, and biodiversity risk factors―[Int. J. Infect. Dis. 53 (Supplement) (December 2016) 21]. International Journal of Infectious Diseases, 2017, 58, 68.	1.5	0