
## Wen-Tao Ji

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655342/publications.pdf Version: 2024-02-01



WEN-TAO L

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Numerical investigation of tube bundle arrangement effect on falling film fluid flow and heat<br>transfer. Applied Thermal Engineering, 2022, 201, 117828.                                                               | 6.0 | 20        |
| 2  | A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle. Applied Thermal Engineering, 2022, 202, 117869.                                  | 6.0 | 35        |
| 3  | The effect of gas streams on the hydrodynamics, heat and mass transfer in falling film evaporation,<br>absorption, cooling and dehumidification: A comprehensive review. Building and Environment, 2022,<br>219, 109183. | 6.9 | 13        |
| 4  | Effect of subsurface tunnel on the nucleate pool boiling heat transfer of R1234ze(E), R1233zd(E) and R134a. International Journal of Refrigeration, 2021, 122, 122-133.                                                  | 3.4 | 10        |
| 5  | Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel. International Journal of Thermal Sciences, 2021, 161, 106758.                             | 4.9 | 27        |
| 6  | Liquid film boiling on plain and structured tubular surfaces with and without hydrophobic coating.<br>International Communications in Heat and Mass Transfer, 2021, 125, 105284.                                         | 5.6 | 10        |
| 7  | Effect of wettability on nucleate pool boiling heat transfer of a low surface tension fluid outside<br>horizontal finned tubes. International Communications in Heat and Mass Transfer, 2021, 125, 105340.               | 5.6 | 9         |
| 8  | Topology optimization of the manifold microchannels with triple-objective functions. Numerical Heat<br>Transfer, Part B: Fundamentals, 2021, 80, 89-114.                                                                 | 0.9 | 7         |
| 9  | Deposition of nano-scale polymer film on micro-fins to enhance the film-wise condensation of very<br>low surface tension substances. International Journal of Heat and Mass Transfer, 2021, 177, 121499.                 | 4.8 | 4         |
| 10 | Peripheral heat transfer prediction of the subcooled falling liquid film on a horizontal smooth tube.<br>Physics of Fluids, 2021, 33, .                                                                                  | 4.0 | 6         |
| 11 | Bioactivities and Structure–Activity Relationships of Fusidic Acid Derivatives: A Review. Frontiers in<br>Pharmacology, 2021, 12, 759220.                                                                                | 3.5 | 15        |
| 12 | Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin<br>thickness. International Journal of Heat and Mass Transfer, 2020, 146, 118829.                              | 4.8 | 15        |
| 13 | Falling film evaporation in a triangular tube bundle under the influence of cross vapor stream.<br>International Journal of Refrigeration, 2020, 112, 44-55.                                                             | 3.4 | 15        |
| 14 | Experimental investigation on the ice melting heat transfer with a steam jet impingement method.<br>International Communications in Heat and Mass Transfer, 2020, 118, 104901.                                           | 5.6 | 3         |
| 15 | Numerical study on flow and heat transfer in a multi-jet microchannel heat sink. International<br>Journal of Heat and Mass Transfer, 2020, 157, 119982.                                                                  | 4.8 | 32        |
| 16 | Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Medicinal Chemistry, 2020, 12, 763-774.                                                      | 2.3 | 8         |
| 17 | Experimental study of falling film evaporation in tube bundles of doubly-enhanced, horizontal tubes.<br>Applied Thermal Engineering, 2020, 170, 115006.                                                                  | 6.0 | 14        |
| 18 | Effect of Fin Structure on the Condensation of R-134a, R-1234ze(E), and R-1233zd(E) Outside the Titanium<br>Tubes. Journal of Heat Transfer, 2020, 142, .                                                                | 2.1 | 3         |

Wen-Tao Ji

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube.<br>Numerical Heat Transfer; Part A: Applications, 2019, 76, 889-908.                                        | 2.1 | 5         |
| 20 | Discovery and synthesis of 3- and 21-substituted fusidic acid derivatives as reversal agents of<br>P-glycoprotein-mediated multidrug resistance. European Journal of Medicinal Chemistry, 2019, 182,<br>111668. | 5.5 | 11        |
| 21 | Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes. Applied Thermal Engineering, 2019, 159, 113878.                                         | 6.0 | 12        |
| 22 | A revised performance evaluation method for energy saving effectiveness of heat transfer<br>enhancement techniques. International Journal of Heat and Mass Transfer, 2019, 138, 1142-1153.                      | 4.8 | 36        |
| 23 | Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nand γ-Fe2O3 nanofluids. International Journal of Heat and Mass Transfer, 2019, 128, 762-772.                    | 4.8 | 33        |
| 24 | Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube. International Journal of Heat and Mass Transfer, 2019, 133, 96-106.                                      | 4.8 | 39        |
| 25 | Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube.<br>Applied Thermal Engineering, 2019, 147, 113-121.                                                        | 6.0 | 30        |
| 26 | A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube. International Journal of Heat and Mass Transfer, 2018, 119, 259-270.                                   | 4.8 | 66        |
| 27 | Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation. International Journal of Heat and Mass Transfer, 2018, 119, 564-576.                   | 4.8 | 63        |
| 28 | Effect of downward vapor stream on falling film evaporation of R134a in a tube bundle. International<br>Journal of Refrigeration, 2018, 89, 112-121.                                                            | 3.4 | 22        |
| 29 | Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes.<br>Applied Thermal Engineering, 2018, 137, 739-748.                                                          | 6.0 | 44        |
| 30 | Cross Vapor Stream Effect on Falling Film Evaporation in Horizontal Tube Bundle Using R134a. Heat<br>Transfer Engineering, 2018, 39, 724-737.                                                                   | 1.9 | 16        |
| 31 | Experimental study of the local and average falling film evaporation coefficients in a horizontal enhanced tube bundle using R134a. Applied Thermal Engineering, 2018, 129, 502-511.                            | 6.0 | 44        |
| 32 | Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite. Molecules, 2018, 23, 2198.                                                                   | 3.8 | 25        |
| 33 | Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 296-323.                  | 2.6 | 26        |
| 34 | Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium<br>tubes. International Journal of Refrigeration, 2018, 93, 259-268.                                         | 3.4 | 21        |
| 35 | Condensation of R134a and R22 in Shell and Tube Condensers Mounted With High-Density Low-Fin<br>Tubes. Journal of Heat Transfer, 2018, 140, .                                                                   | 2.1 | 11        |
| 36 | COMPARATIVE STUDY ON THE POOL BOILING AND FALLING FILM EVAPORATION OF REFRIGERANT R134A OUTSIDE THE SAME TUBES. , 2018, , .                                                                                     |     | 0         |

Wen-Tao Ji

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental investigations of R134a and R123 falling film evaporation on enhanced horizontal tubes.<br>International Journal of Refrigeration, 2017, 75, 190-203.                                                           | 3.4 | 56        |
| 38 | Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow. International Journal of Heat and Mass Transfer, 2017, 111, 467-483.                                              | 4.8 | 32        |
| 39 | Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux. Applied Thermal<br>Engineering, 2017, 127, 1364-1371.                                                                                | 6.0 | 22        |
| 40 | The influence of surface structure and thermal conductivity of the tube on the condensation heat<br>transfer of R134a and R404A over single horizontal enhanced tubes. Applied Thermal Engineering, 2017,<br>125, 1114-1122. | 6.0 | 24        |
| 41 | An example for the effect of round-off errors on numerical heat transfer. Numerical Heat Transfer,<br>Part B: Fundamentals, 2017, 72, 21-32.                                                                                 | 0.9 | 2         |
| 42 | Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube. Applied<br>Thermal Engineering, 2016, 103, 177-186.                                                                            | 6.0 | 72        |
| 43 | Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle.<br>International Journal of Heat and Mass Transfer, 2016, 92, 1171-1181.                                                     | 4.8 | 51        |
| 44 | Experimental validation of Cooper correlation at higher heat flux. International Journal of Heat and<br>Mass Transfer, 2015, 90, 1241-1243.                                                                                  | 4.8 | 10        |
| 45 | Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. International Journal of Heat and Mass Transfer, 2015, 88, 735-754.                                   | 4.8 | 85        |
| 46 | Film condensing heat transfer of R134a on single horizontal tube coated with open cell copper foam.<br>Applied Thermal Engineering, 2015, 76, 335-343.                                                                       | 6.0 | 30        |
| 47 | Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes.<br>International Journal of Heat and Mass Transfer, 2015, 86, 744-754.                                                  | 4.8 | 31        |
| 48 | Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. International Journal of Heat and Mass Transfer, 2014, 77, 194-201.                                   | 4.8 | 35        |
| 49 | Experimental Study of Water Cooled Condenser Made of Three Dimensional and High Fin Density<br>Integral-Finned Tubes. , 2014, , .                                                                                            |     | 0         |
| 50 | Parameter Comparison of Condensation Heat Transfer of R134a Outside Horizontal Low-Finned Tubes. ,<br>2014, , .                                                                                                              |     | 1         |
| 51 | Thermally stimulated current and dielectric studies of liquid crystal composites. , 2013, , .                                                                                                                                |     | 0         |
| 52 | Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes ? An extension of Gnielinski equation. International Journal of Heat and Mass Transfer, 2012, 55, 1375-1384.                        | 4.8 | 63        |
| 53 | Influence of condensate inundation on heat transfer of R134a condensing on three dimensional<br>enhanced tubes and integral-fin tubes with high fin density. Applied Thermal Engineering, 2012, 38,<br>151-159.              | 6.0 | 22        |
| 54 | Pool boiling heat transfer of R134a on single horizontal tube surfaces sintered with open-celled copper foam. International Journal of Thermal Sciences, 2011, 50, 2248-2255.                                                | 4.9 | 27        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nucleate Pool Boiling Heat Transfer of R134a and R134a-PVE Lubricant Mixtures on Smooth and Five<br>Enhanced Tubes. Journal of Heat Transfer, 2010, 132, .        | 2.1 | 35        |
| 56 | Condensation heat transfer of HFC134a on horizontal low thermal conductivity tubes. International<br>Communications in Heat and Mass Transfer, 2007, 34, 917-923. | 5.6 | 19        |