Breda Kegl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66551/publications.pdf Version: 2024-02-01

RDEDA KECL

#	Article	IF	CITATIONS
1	Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 2011, 90, 795-802.	3.4	163
2	Effects of biodiesel on emissions of a bus diesel engine. Bioresource Technology, 2008, 99, 863-873.	4.8	137
3	Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine. Fuel, 2002, 81, 2035-2044.	3.4	134
4	Influence of biodiesel on engine combustion and emission characteristics. Applied Energy, 2011, 88, 1803-1812.	5.1	130
5	Biodiesel influence on tribology characteristics of a diesel engine. Fuel, 2009, 88, 970-979.	3.4	101
6	The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation. Applied Energy, 2013, 111, 558-570.	5.1	98
7	Numerical analysis of injection characteristics using biodiesel fuel. Fuel, 2006, 85, 2377-2387.	3.4	96
8	Experimental Analysis of Injection Characteristics Using Biodiesel Fuel. Energy & Fuels, 2006, 20, 2239-2248.	2.5	79
9	Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Progress in Energy and Combustion Science, 2021, 83, 100897.	15.8	72
10	Numerical and experimental study of combustion, performance and emission characteristics of a heavy-duty DI diesel engine running on diesel, biodiesel and their blends. Energy Conversion and Management, 2014, 81, 534-546.	4.4	69
11	Experimental Investigation of Optimal Timing of the Diesel Engine Injection Pump Using Biodiesel Fuel. Energy & Fuels, 2006, 20, 1460-1470.	2.5	63
12	Coupled Simulations of Nozzle Flow, Primary Fuel Jet Breakup, and Spray Formation. Journal of Engineering for Gas Turbines and Power, 2005, 127, 897-908.	0.5	56
13	Physical and Chemical Properties of Ethanolâ^'Biodiesel Blends for Diesel Engines. Energy & Fuels, 2010, 24, 2002-2009.	2.5	56
14	Diesel and Biodiesel Fuel Spray Simulations. Energy & amp; Fuels, 2008, 22, 1266-1274.	2.5	54
15	Determining the speed of sound, density and bulk modulus of rapeseed oil, biodiesel and diesel fuel. Thermal Science, 2012, 16, 505-514.	0.5	48
16	Biodiesel usage at low temperature. Fuel, 2008, 87, 1306-1317.	3.4	47
17	Optimization of a Fuel Injection System for Diesel and Biodiesel Usage. Energy & Fuels, 2008, 22, 1046-1054.	2.5	46
18	Experimental investigation on injection characteristics of bioethanol–diesel fuel and bioethanol–biodiesel blends. Fuel, 2011, 90, 1968-1979.	3.4	38

Breda Kegl

#	Article	IF	CITATIONS
19	The influence of in-nozzle cavitation on flow characteristics and spray break-up. Fuel, 2018, 222, 550-560.	3.4	36
20	Influence of Biodiesel Fuel on the Combustion and Emission Formation in a Direct Injection (DI) Diesel Engine. Energy & Fuels, 2007, 21, 1760-1767.	2.5	32
21	Modeling of macroscopic mineral diesel and biodiesel spray characteristics. Fuel, 2018, 222, 810-820.	3.4	30
22	Influence of biodiesel on injection, fuel spray, and engine characteristics. Thermal Science, 2008, 12, 171-182.	0.5	30
23	Reduction of Diesel Engine Emissions by Water Injection. , 0, , .		27
24	Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel. Energy & Fuels, 2009, 23, 1754-1758.	2.5	27
25	NO _{<i>x</i>} and Particulate Matter (PM) Emissions Reduction Potential by Biodiesel Usage. Energy & Fuels, 2007, 21, 3310-3316.	2.5	19
26	Numerical injection characteristics analysis of various renewable fuel blends. Fuel, 2012, 97, 832-842.	3.4	18
27	The numerical simulation of biofuels spray. Fuel, 2015, 144, 71-79.	3.4	18
28	Green Diesel Engines. Lecture Notes in Energy, 2013, , .	0.2	16
29	Injection System Design Optimization by Considering Fuel Spray Characteristics. Journal of Mechanical Design, Transactions of the ASME, 2004, 126, 703-710.	1.7	15
30	Why we should invest further in the development of internal combustion engines for road applications. Oil and Gas Science and Technology, 2020, 75, 56.	1.4	14
31	One-dimensional modeling and simulation of injection processes of bioethanol-biodiesel and bioethanol-diesel fuel blends. Fuel, 2018, 227, 334-344.	3.4	12
32	An Improved Mathematical Model of Conventional FIE Processes. , 1995, , .		8
33	Effect of biodiesel on diesel engine emissions. Thermal Science, 2018, 22, 1483-1498.	0.5	8
34	Nanomaterials for Environmental Application. Green Energy and Technology, 2020, , .	0.4	6
35	Effect of the In-Cylinder Back Pressure on the Injection Process and Fuel Flow Characteristics in a Common-Rail Diesel Injector Using GTL Fuel. Energies, 2021, 14, 452.	1.6	6
			_

4

Breda Kegl

#	Article	IF	CITATIONS
37	Rotary Engine Design. , 2001, , .		3
38	Experimental investigation review of biodiesel usage in bus diesel engine. Thermal Science, 2017, 21, 639-654.	0.5	3
39	Optimal Design of a Cam Profile for Diesel Injection Pump. , 1997, , .		2
40	Diesel Engine Characteristics. Lecture Notes in Energy, 2013, , 5-50.	0.2	2
41	Biodiesel as Diesel Engine Fuel. Lecture Notes in Energy, 2013, , 95-125.	0.2	2
42	Effects of Biodiesel Usage on Fuel Spray Characteristics. Lecture Notes in Energy, 2013, , 153-177.	0.2	2
43	Effects of Biodiesel Usage on Engine Performance, Economy, Tribology, and Ecology. Lecture Notes in Energy, 2013, , 179-221.	0.2	2
44	Diesel Engines. Green Energy and Technology, 2020, , 5-27.	0.4	2
45	Comparative study of various renewable fuels blends to run a diesel power plant. Renewable Energy and Power Quality Journal, 0, 1, 53-57.	0.2	2
46	Effects of Biodiesel Usage on Injection Process Characteristics. Lecture Notes in Energy, 2013, , 127-152.	0.2	1
47	Influence of water/diesel emulsified fuel on diesel engine characteristics. Thermal Science, 2019, 23, 1749-1755.	0.5	1
48	Improvement of Diesel Engine Characteristics by Numeric Optimization. Lecture Notes in Energy, 2013, , 223-255.	0.2	0
49	Guidelines for Improving Diesel Engine Characteristics. Lecture Notes in Energy, 2013, , 51-93.	0.2	0
50	Nanofuel Usage in Diesel Engines. Green Energy and Technology, 2020, , 107-158.	0.4	0
51	Practical Viability of Nanofuels Usage in Diesel Engines. Green Energy and Technology, 2020, , 159-175.	0.4	0
52	Nanofuels. Green Energy and Technology, 2020, , 63-105.	0.4	0
53	Conclusions and Future Perspectives. Green Energy and Technology, 2020, , 177-180.	0.4	0
54	Nanomaterials for Diesel Engine Applications. Green Energy and Technology, 2020, , 29-62.	0.4	0